Giorgos Mellios | 11 October 2022 | ERMES meeting (web)

COPERT and Guidebook updates

New elements in COPERT v5.6 (Sep 2022)

- Revision of non-exhaust PM emissions
- Revision of emissions degradation methodology
- Revision of cold start methodology
- Revision of Euro 6 LPG passenger cars
- Bug corrections

Revision of non-exhaust PM emissions

Update fields

- Passenger Cars & Light Commercial Vehicles
 - Brake wear emissions
- Introduction of Electric Vehicles
 - Impact of vehicle weight
 - Impact of regenerative braking
 - New non-exhaust emission factors

Brake wear emissions

- Standardized measurement procedure from PMP Programme: WLTP brake cycle
- Measurements on WLTP brake cycle
- Revision of brake wear emission factors for PCs and LCVs

PM10 brake wear:

- Low-Steel (LS) pads : 12 mg/km
- Non-Asbestos Organic (NAO) pads: 3 mg/km (possibly in Euro 7?)

Electric Vehicles – Impact of Vehicle Weight

Revised non-exhaust emission factors

European Environment Agency European Topic Centre Climate change mitigation

TSP emission factors of passenger cars

TSP base emission factors [mg/km]

Powertrain	Tyre	Brake	Road
ICE	10.7	12.2	15.0
Hybrid	11.1	9.7	15.9
PHEV	11.2	6.6	16.1
BEV	11.6	3.4	16.9

Revision of degradation methodology

Degradation equation

- Pollutants: NOx, CO, VOC
- Degradation after 50,000 km
- No further degradation after 200,000 km

Deterioration equation example

Degradation graphs

Deterioration factor by Mileage, Fuel, Pollutant and Euro Standard

Fuel 🔍 Diesel 🔍 Petrol

Revision of cold start methodology

Methodology

Equations based on:

Modelling of cold start emissions for passenger cars, Joumard & Andre (1999)

Equations used:

- ✓ Impact of parking time
- ✓ Impact of travelled distance
- × Impact of speed and temperature
- × Main equation of cold excess emissions

Big data on road transport

Studies:

- A pilot study to address the travel behavior and the usability of electric vehicles in two Italian provinces, M. De Gennaro, E. Paffumi, G. Martini, H.Scholz (2014)
 - 28,000 vehicles, Italy
- *European-wide study on big data for supporting road transport policy*, E. Paffumi, G. Martini, M. De Gennaro (2018)
 - 600,000 vehicles, multiple cities in Europe

<u>Data used:</u>

- Probability distribution of parking duration \rightarrow Impact of parking duration
- Trip number per trip length \rightarrow *Impact of travelled distance*

Guidebook form – Passenger cars

<u>Euro Standards</u> :	Euro 6
<u>Fuels</u> :	Petrol, Diesel
<u>Pollutants</u> :	NOx, CO, VOC

Calculation of cold start emissions (overemissions)

 $E_{COLD} = \beta \times bc \times N \times M \times e^{hot} \times (e^{cold} / e^{hot} - 1)$

Guidebook form		

where,		
β	•	fraction of mileage driven in cold engine (beta parameter)
bc	•	beta-reduction factor
Ν	:	number of vehicles (stock)
Μ	:	mileage per vehicle
e ^{hot}	•	hot emission factor
e ^{cold} / e ^{hot}	:	cold/hot emission quotient

e^{cold} / e^{hot} = A x v + B x T + C (v: vehicle speed, T: temperature)

Passenger car - example

40

Guidebook form – Heavy Duty Vehicles

<u>Vehicle Categories:</u> <u>Euro Standards</u>: <u>Fuels</u>: <u>Pollutants</u>: Heavy Duty Trucks, Buses Euro V, Euro VI Diesel NOx, CO, VOC

Calculation of cold start emissions (overemissions)

$E_{COLD} = \beta \times N \times M \times e^{co}$	ld
--	----

where,

β	•
N	:
Μ	
e ^{cold}	:

fraction of mileage driven in cold engine (beta parameter) number of vehicles (stock) mileage per vehicle cold overemission factor

 $\beta = 8.25 / I_{trip}$ $e^{cold} = A \times v + B \times T + C$ (v: vehicle speed, T: temperature)

Heavy Duty Vehicles - example

CO EF [mg/km] for Euro VI A/B/C heavy vehicles

Vehicles

<u>Categories:</u> <u>Euro Standards:</u> <u>Engine size:</u> 4 passenger cars, 1 LCV (Euro 6b, 6c) Euro 6b, Euro 6c 1.2 – 1.6 l

Measurements

Laboratory and On-road cycles (conducted by Innovhub in Italy)

• <u>Revised pollutant equations</u> NOx, CO, VOC, SPN23

RDE cycle in Milan (Low speed – High Speed)

Revised equations

European Environment Agency European Topic Centre Climate change mitigation

Bugs correction

- PM and SPN23 hot emission factors of HDVs and buses
- Cold PM and SPN23 emissions of Euro 6 PCs and LCVs
- Brake and tyre non-exhaust heavy metal emissions
- Hot emission factors for LCVs N1-I
- Other minor changes

Planned updates for next year

- Revision of Heavy-Duty Vehicles categories
- Revision of emission factors of urban buses
- Introduction of Euro 7 vehicles

Thank you for your attention!

