DIAS

SMART ADAPTIVE REMOTE DIAGNOSTIC ANTITAMPERING SYSTEMS Tampering of Emission Controls and Countermeasures

Dimitrios Kontses, Zissis Samaras

Laboratory of Applied Thermodynamics, Aristotle University of Thessaloniki (LAT/AUTh)

ERMES Plenary 2022

11th - 12th October 2022

Contents

- Who we are
- The 4 objectives of DIAS project
 - Market analysis and risk assessment
 - Development of countermeasures
 - Demonstration of the success of the developed countermeasures
 - Legislative guidelines and impact assessment
- Tampering emission rates and vehicle shares

Contributions from DIAS project

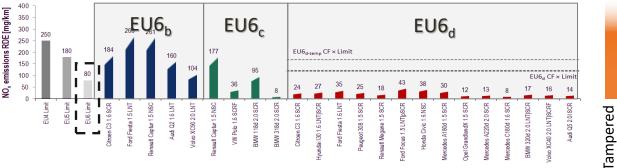
Many thanks to the Work Package leaders:

- Ann Delahaye (TNO)
- Miao Zhang (FEV)
- Andreas Hastall (Bosch)

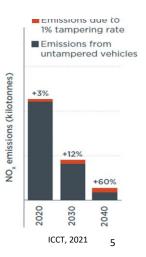
and all other DIAS colleagues

Funding: This research was funded by the European Union's Horizon 2020 Research and Innovation Programme through DIAS project (https://dias-project.com/) under Grant Agreement No. 814951

Disclaimer: This document reflects only the author's view and the Agency is not responsible for any use that may be made of the information it contains


Introduction-The DIAS consortium

- Smart Adaptive Remote Diagnostic Antitampering Systems
- 11 partners with various competencies
- Part of H2020 European programme (smart, green and integrated transport sector)
- International co-operation
- Budget: €4.99M
- Duration: 38 months (Sept. 2019 Oct. 2022)



Introduction-Problem statement

- NOx emissions (diesel):
 - EU6d fleet average: 20-30 mg/km thanks to the development of effective Environmental Protection Systems (EPS)
 - Tampered vehicle: More than x10 higher emissions

- Even a small percentage of tampered vehicles (1%) can lead to a huge increase in fleet emissions in the future (+60% for 2040)
- Up to 10% of EU5/V and EU6/VI vehicles in the EU are estimated to have tampered with environmental protection systems

Vehicles

- 1. Detect tampering using On-Board Diagnostics and Monitoring (OBD/OBM)
- 2. Prevent tampering via hardened in-vehicle communication and component security
- 3. Report tampering events and relevant data to appropriate authorities

Target: Make tampering economically unattractive and reduce emissions

Our methodology:

Objective IV: Objective I: **Objective II: Objective III:** Impact assessment Market analysis and Detection **Demonstration of** and guidelines **Risk assessment** methods and the success of recommendations Countermeasures measures for future legislation

Objective I: Market Analysis Overview of tampered systems and motives

SCR tampering (NOx emissions)

•Eliminate/reduce urea cost (>**€2K/truck/year**) and cost of replacing malfunctioned SCR components

DPF (GPF) tampering (PM emissions)

•Avoid the high cost of DPF replacement (>€1.5K), eliminate regeneration fuel penalty

EGR tampering (NOx emissions)

•Avoid the high cost of EGR-components replacement (*Note: Reduced motivation in EU6*)

TWC tampering

•Negligible/zero for EU5/6 (Note: it was an issue for EU4)

ECU reprogramming

•Complex method with high cost (from 200€)

Used by experienced tamperers

Emulators and "DTC clear" devices

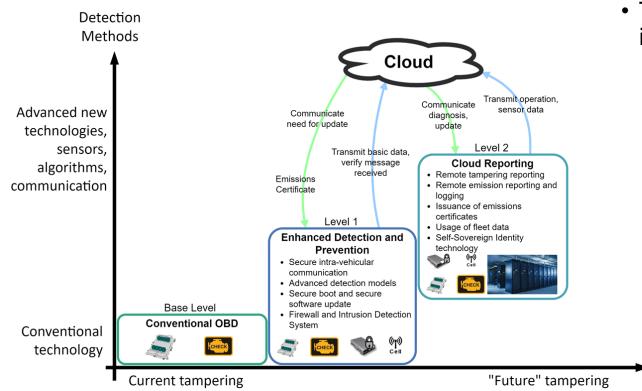
- Provide manipulated signals and "Diagnosti Code Clear" commands to the ECU
- Low cost (from 20 €)
- •Easy to install but with operational/reliability issues
- Applicability continuously decreasing
- Prone to visual inspection checks
- •More common in HD instead of LD vehicles

Modifiers

•Simpler emulators e.g. mechanical spacers, se extensions, mini catalysts, resistors

Test programme: 42 commercial tampering devices/services, 5 "homemade"

<u>Methods</u>


ering

ă E

 $\overline{\mathbf{D}}$

S tampering devices

Objective II: Detection methods and countermeasures - Overview

IASI

- Two-step approach that involves:
 - Implementing measures to take early actions against tampering activities.
 - Cloud-based step that prepares methodologies and means for dealing with tampering attempts in the future that are currently unknown.

Tampering

8

Objective III: Demonstration of the success of measures

- Installation of anti-tampering systems on demonstrators:
 - Demonstrator vehicle provided by partner Ford OTOSAN
 - Stand-alone lab demonstrators
- Evaluation of anti-tampering systems via:
 - Internal verification and validation of the system (on-going)
 - External hacking events:
 - Analysis of vehicle hardware and software by IT security experts and hackers
 - Hackathon #1 organized in May 2021
 - Hackathon #2 organized in March 2022

→ Received feedback led to adjustments on DIAS solutions and further considerations

Objective IV: Impact assessment and guidelines/recommendations on future legislation – Impact assessment

- Environmental, Health and Societal
 - Address societal **needs to understand the tampering phenomenon** and generate considerable **climate** and **public health co-benefits**

Note: A detailed Impact Assessment is currently finalizing, results will be available very soon

- Regulatory
- Influence on European and the global economy by assessing manipulated vehicles and providing solutions for reducing their negative impact
 - DIAS technical solutions are leveraged to recommend regulatory provisions:
 - For vehicle manufacturers:
 - For Type Approval of new vehicles
 - After the Type Approval for future vehicles in-service
 - For many other end-users

Input data for DIAS Impact Assessment

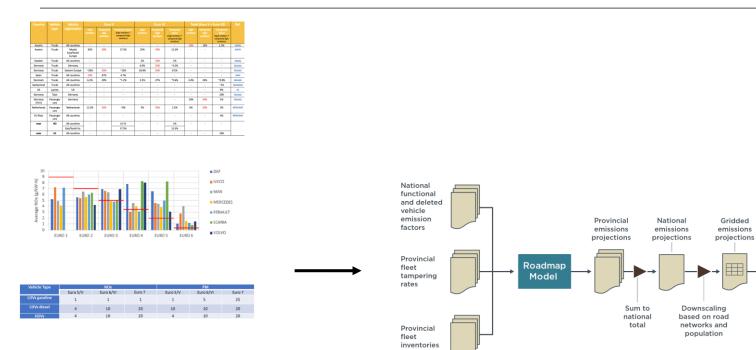
- Needed inputs to quantify tampering:
 - **Tampering emission rates [-]:** ratio of tampered vehicle emissions to non-tampered vehicle emissions
 - → Calculated based on tailpipe emissions from tampered vehicles in chassis dyno or on the road (remote sensing, plume chasing, PEMS, SEMS) compared with non-tampered data from the same vehicle
 - **Tampering vehicle shares [%]:** ratio of tampered to non-tampered vehicles
 - \rightarrow Calculated based on a 2-step approach:
 - Step 1: High emitters are identified via remote sensing, plume chasing, etc.
 - Step 2: **Tampered high emitters** are identified via visual inspection and other tampering-related checks
 - Tampering share [%] = (high emitters share [%]) × (tampered high emitters share [%])

Tampering vehicle shares [%]

Country	Vehicle	Vehicle	Euro V			Euro VI			Total (Euro V + Euro VI)			EPS
	type	registration	High emitters	Tampered high emitters	Tampered share (high emitters * tampered high emitters)	High emitters	Tampered high emitters	Tampered share (high emitters * tampered high emitters)	High emitters	Tampered high emitters	Tampered share (high emitters * tampered high emitters)	affected
Austria	Trucks	All countries	-	-	-	-	-	-	10%	15%	1.5%	SCR (NOx)
Austria	Trucks	Mostly East/South EU	35%	50%	17.5%	25%	50%	12.5%	-	-	-	SCR (NOx)
Sweden	Trucks	All countries	-	-	-	2%	50%	1%	-	-	-	SCR (NOx)
Germany	Trucks	Germany	-	-	-	6.9%	50%	~3.5%	-	-	-	SCR (NOx)
Germany	Trucks	Eastern Europe	~26%	50%	~13%	18.9%	50%	9.5%	-	-	-	SCR (NOx)
Spain	Trucks	All countries	20%	47%	9.4%	-	-	-	-	-	-	SCR (NOx)
Denmark	Trucks	All countries	6.2%	20%	~1.2%	2.2%	27%	~0.6%	3.4%	24%	~0.8%	SCR (NOx)
Switzerland	Trucks	All countries	-	-	-	-	-	-	-	-	~1%	SCR (NOx)
UK	Trucks	All countries	-	-	-	-	-	-	-	-	~4%	SCR (NOx)
UK	Lorries	UK	-	-	-	-	-	-	-	-	8%	DPF, SCR, EGR (PM/PN, NOx)
Germany	Taxis	Germany	-	-	-	-	-	-	-	-	10%	DPF (PM/PN)
Germany	PC	Germany	-	-	-	-	-	-	10%	50%	5%	DPF, EGR (PM/PN, NOx)
Netherlands	PC	Netherlands	12.5%	50%	~6%	5%	50%	2.5%	6%	50%	3%	DPF (PM/PN)
EU fleet	PC	All countries	-	-	-	-	-	-	-	-	4%	DPF (PM/PN)
max	HD	All countries	-	-	~10%	-	-	1% (1 source)	-	-	-	
		East/South Eu.			~18%			~13%				
тах	LD	All countries	-	-	-	-	-	-	-	-	10%	

Tampering rates and shares (intermediate scenario)

Tampering emission rates [-]: Ratio of tampered to non-tampered emissions


Vehicle Type		NOx			PM			
	Euro 5/V	Euro 6/VI	Euro 7	Euro 5/V	Euro 6/VI	Euro 7		
LDVs gasoline	1	1	1	1	5	25		
LDVs diesel	4	10	20	10	20	50		
HDVs	4	10	20	4	20	50		

Tampering vehicle shares [%]: Ratio of tampered to non-tampered vehicles

Vehicle Type		NOx		PM			
	Euro 5/V	Euro 6/VI	Euro 7	Euro 5/V	Euro 6/VI	Euro 7	
LDVs gasoline	0	0	0	0	2.5	1.3	
LDVs diesel	2.5	5	2.5	5	5	2.5	
HDVs	8.5	6	3	8.5	6	3	

- Data availability for shares of tampered vehicles of the current fleet is limited thus, assumptions/scenarios were needed
- Assumptions are also needed regarding future rates/shares for EU7 tampered vehicles based on how TIAS
 ¹³

Modelling the environmental and health impacts of tampering

Vehicle Type		NOx		PM			
	Euro 5/V	Euro 6/VI	Euro 7	Euro 5/V	Euro 6/VI	Euro 7	
LDVs gasoline	0	0	0	0	2.5	1.3	
LDVs diesel	2.5	5	2.5	5	5	2.5	
HDW	85	6	3	85	6	1	

National

health

impacts

FATE

Model

Input/output

Other calculations

Model

Summary

- Even a small number of tampered vehicles can lead to a remarkable increase in fleet emissions (note: actual number of tampered vehicles may be underestimated today)
- Developed solutions are in 3 directions: diagnostics, security and reporting
- Successful anti-tampering should engage several end-users; DIAS focuses on guidelines for vehicle manufacturers and covers many other end-users
- Legislative framework should:
 - · Cover both the Type Approval of vehicles and vehicles in-service
 - Combine information and actions for all involved end-users
- The tampering emission rates and vehicle shares for an intermediate scenario indicate that:
 - For a tampered EU6 LDV the NOx emissions can be ×10 higher compared to a non-tampered vehicle
 - More than 6% of the EU6 LDVs have been tampered with their environmental protection system
- These number are at least double for the worst-case scenario

Thank you

Dr. Dimitrios Kontses

Aristotle University of Thessaloniki, Greece Tel: +302310.990543 E-mail: <u>dkontses@auth.gr</u>

Prof. Zissis Samaras

Aristotle University of Thessaloniki, Greece Tel: +302310.996014 E-mail: <u>zisis@auth.gr</u> Register for the DIAS final dissemination event on the 25th of October 2022 (remotely)

Register here (remote participation)