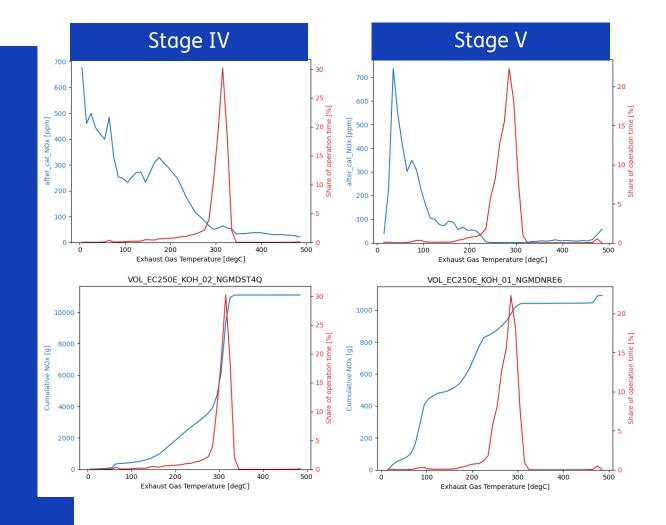
Mobile Emissions

New and recent developments in The Netherlands

Dr. Jessica M. de Ruiter & Ir. Emiel van Eijk

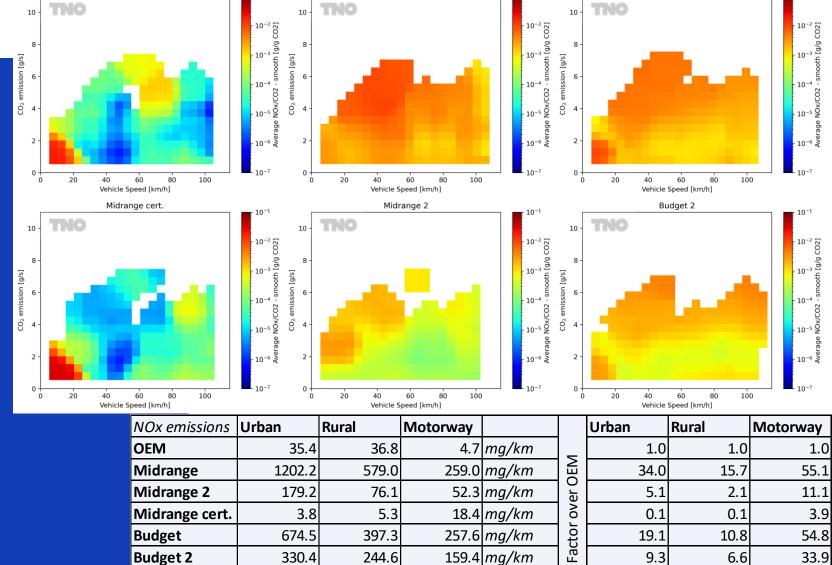
Current topics for Dutch emission factors



- 1. Mobile machinery emissions
- 2. Replacement and sport catalysts
- 3. PTI effectiveness + PTI NO_x test
- 4. Temperature-controlled transport
- 5. Quantifying effect of deterioration & defects
- 6. Driving behaviour (cold starts, idling, speeding)
- 7. Particulate emissions (incl. volatiles, etc.)
- 8. Non-regulated pollutants
- 9. Fuel affecting emission levels
- 10. Motorbikes & mopeds
- 11. Shipping emissions

Mobile machinery monitoring

- Stage IV vs V shows clear differences in both PPM and cumulative NO_x distribution
 - This appears to be a broader trend
- SCR "off" is dominant in NO_x contribution
 - 7 % time can lead to 92% NO_x
 - Note that these have relatively high engine load compared to those monitored previously
- Cold start and (especially) low-load operation is most relevant for total emissions



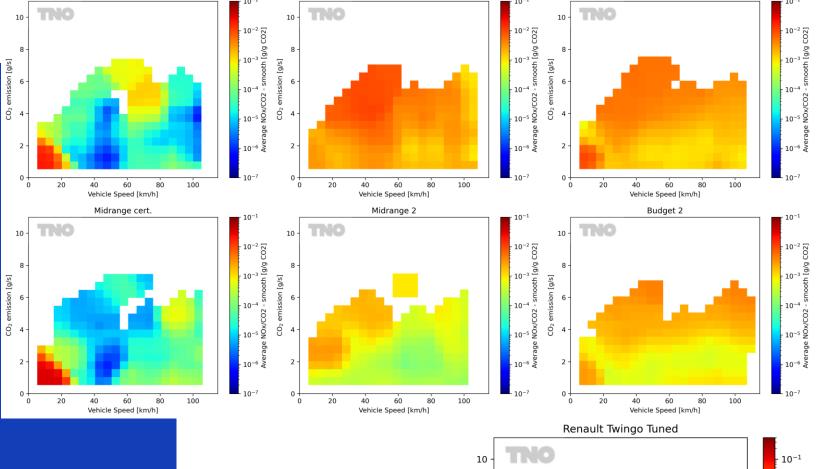
	BOM BF700		Dynapac 2500		VOG_1800i		WIR_250_1		WIR_250_2		LIE_R926W	
	SCR off	SCR on	SCR off	SCR on	SCR off	SCR on	SCR off	SCR on	SCR off	SCR on	SCR off	SCR on
Time [%]	9	91	7	93	25	75	29	71	11	89	19	81
Avg. NOx/CO2 [ppm/%]	46	1,9	57	0,4	34	0,8	36	1,3	30	1,9	56	1,5
Total NOx [%]	71%	29%	92%	8%	94%	6%	92%	8%	66%	34%	90%	10%

Quantifying high emitters

- Estimated that 6% of the older petrol vehicles have a defective TWC system and are responsible for about half the NO_x emissions of petrol vehicles.
- When TWC catalysts are stolen, replacement catalysts are typically inferior quality.

Midrange

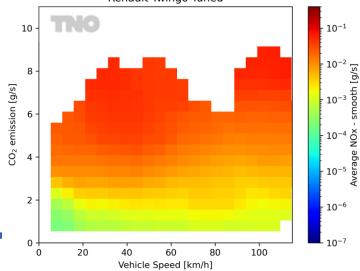
OEM


Budget

Quantifying high emitters

- Petrol vehicles have a defective TWC system and are responsible for about half the NO_x emissions of petrol vehicles.
- When TWC catalysts are stolen, replacement catalysts are typically inferior quality.
- Sports catalysts (more noise and power) lead to increased emissions.

Current PTI tests do not detect any of these problems:


→ Further development of plume chaser to quantify the fraction of vehicles with defects and their impact

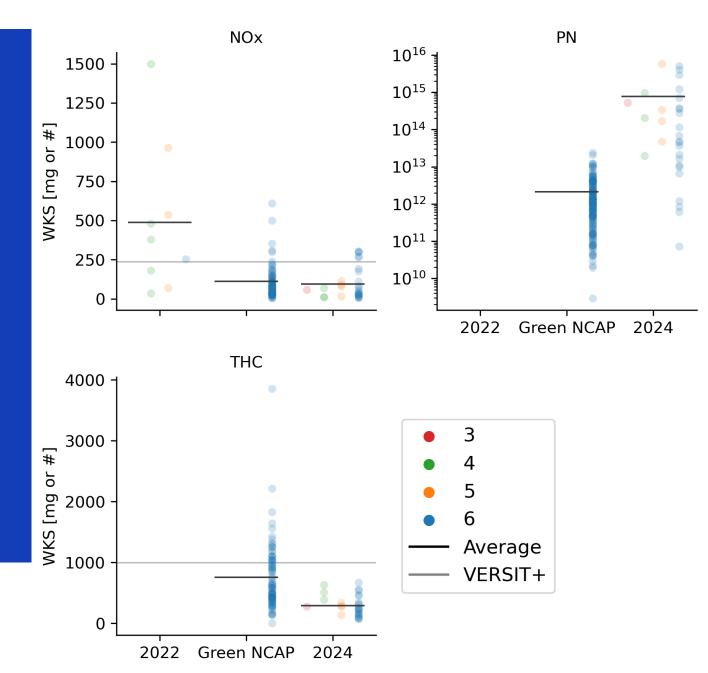
Tuned vehicle: 630 mg/km

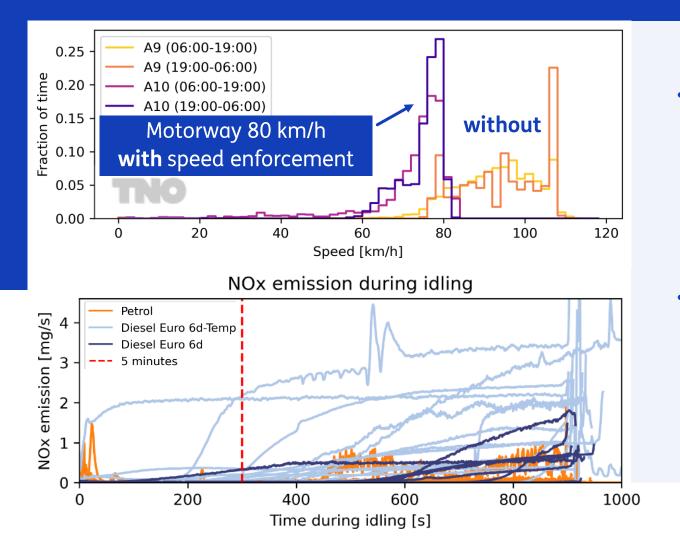
OEM

TA limit Euro 4: 80 mg/km

Monitoring temperature-controlled transport

- Year-long monitoring campaign
- Additional emissions calculated for road transport
- On average 39 g/hour leads to \sim 1.8 kton NO $_{\rm x}$ annually, but large variation due to operational profile
- Some machines are also plug-in, which leads to lower NO_x during loading & unloading
- PM measurements to be conducted Q4 2024





Cold start as a point source

- Integrated in VERSIT+ with annual kilometre dependence
- New campaign: 31 random petrol vehicles
 - Idling + restart
 - Most cold start emissions within 20 30 sec
 - THC will be updated to ~ 760 mg

Driver behaviour

- Chase car campaign shows effectivity of speed enforcement
- 80 km/h on the motorway
- Many vehicles could not be followed due to high speeds
- Newest idling measurements show newer diesels perform better during idling, but some still have higher emissions after 10 min
- "Oh, I'm just charging my phone"

Literature (from 2023-2024)

- <u>Emissiefactoren voor luchtkwaliteit en stikstofdepositie</u> | VERSIT+ Emission Factors
- <u>Emissiefactoren wegverkeer 2024 Wijzigingen in de ER en SRM emissiefactoren voor luchtkwaliteit, stikstofdepositie en klimaat</u>
- Opties voor monitoring van de NOx-emissies van mobiele werktuigen
- NOx high emitters in the Dutch fleet. Characterizing the problem and researching methods for recognizing petrol high emitters
- Real-world emissions of temperature-controlled transport in the Netherlands
- Analysis of the emission performance of vehicles tested within the Green NCAP programme
- Real-world fuel consumption and electricity consumption of passenger cars and light commercial vehicles 2023
- <u>Emissiemetingen Stadler passagierstrein met diesel en HVO</u>
- <u>Tailpipe emissions of Euro 5 mopeds</u>
- Reductiepotentieel van de milieu- en klimaatimpact van binnenvaart Meten op Schepen