New emission information on shipping emissions

Prof. Leonidas Ntziachristos

November 12, 2024

Background

- Environmentally, major emphasis of shipping given on decarbonization (= zero out fossil CO₂)
- Vessels are major sources of air pollutants (NO_x, SO_x, PM, HC, PAH...)
- Vessels are also major sources for water pollution, primarily through scrubbers' effluent
- ✓ New fuels (LNG, MeOH, NH₃,...) mean new pollutants

There is the need to continue monitoring pollutants produced from vessels both to the air and to the water

EMERGE

Contribution of shipping to air pollution

NO₂ shipping contribution 2018 10 8 NO₂ [µg/m³] 6 2 0 november december september october ianuary february 3, august S?

Chatzikiriakio - SHIP Piraeus - SHIP

Drapetsona - SHIP Perama - SHIP

Contribution of 18-20% to air pollution around the port of Piraeus, in terms of SO₂ and NO_x

Emission level dependance on engine load

Latest Update of the Guidebook in 2021

Efficiency of emission control technologies

Overview of emission reduction percentage of different emission control technologies

Emission	Fuel	SFOC	CO (%)	NO _X	SO ₂ (%)	NMVOC	PM		
control		(%)		(%)		(%)	(%)		
technology									
Wet Scrubber	Bunker Fuel	-2.15	18.2	5,84	98.8	36.3	35.8		
	Oil	2,13	10.2		50,0				
	MDO/MGO	n.r.	n.r.	n.r.	If SCR is or		n.r.		
SCR	Bunker Fuel Oil	0,495	-63,0	89,6	23,5	68,6	34,8		
	MDO/MGO	-1,48	-55,8	70,2	6,57	78,3	6,10		
DOC	Bunker Fuel Oil	1,09	31.1	-0,629	-1,30	50,0	50,0		
	MDO/MGO	1,09	31	-+ + + +					
DPF	Bunker Fuel Oil	n.r.	n. r	Within the activities of the EU HC recordings of NO _x emissions from					
	MDO/MGO	-1,50	0,C a	and analysed. The data originated locations in the Baltic Sea and North shows that 50% of the emission mean comply with the latest Tier III NO _x is emission levels. The finding raises control the NO _x regulation for shipping and jeopardises the targets of environm					
SCR+Scrubber	Bunker Fuel Oil	-2,98	-11 s						
	MDO/MGO	n.r.	n. C						
SCR+DPF	Bunker Fuel Oil	n.r.	n. t						
	MDO/MGO	-1,50	-55 ไ						
DOC+Scrubber	Bunker Fuel Oil	1,09	42,9	$\begin{array}{c c c c c c c c c c c c c c c c c c c $					
	MDO/MGO	n.r	n.r	n.r	n.r	n.r	n.r		

Evidence growing that Tier III SCR is largely not operational for a large number of vessels

HORIZON 2020 project SCIPPER, om vessels were remotely collected ated from different measurement North Sea within 2022. The analysis measurements of ships that had to O_x levels, far exceed the expected es concerns on the effectiveness of and, if further confirmed, overall onmental policies in this sensitive

ENGIMMONIA

Ammonia combustion emission challenges

Objective: Development of the EATS of large ammonia engines to simultaneously achieve:

- NO_x emissions below Tier III levels
- Minimize NH₃ slip
- Minimize N₂O emissions

Approach in developing NH₃ EATS

ANR>1 with high N₂O engine-out emissions

9

Test engine at DTU

Fuels tested separately:

- CH₄ (reference)
- NH₃

Engine specifications

Engine type	1-cyl CFR SI 4-stroke			
Displacement volume	611 cm ³			
Bore	82.78 mm			
Stroke	114.3 mm			
Compression ratio	4.5 – 15			
Intake pressure	0.5 - 1.5 bar absolute			

Does homogeneous NH₃ **combustion form particles?**

- TPN₂₃ of NH₃ higher than CH₄ combustion
- TPN₁₀ from NH₃ far exceed those from CH₄
- $NH_3 TPN_{10}$ emissions show inverse correlation with λ

Does homogeneous NH₃ combustion form solid particles **2 NGR** MONAL

- SPN₂₃ of CH₄ and NH₃ combustion are at similar levels
- NH₃ SPN₁₀ still higher than CH₄
- NH₃ SPN10 & SPN23 emissions seem to correlate with λ

What is the level of NH₃ particle emissions?

- S/TPN₂₃ consistently below of '23 nm Stage V limit', regardless of sampling configuration
- SPN₁₀ below '23 nm Stage V limit'; some exceedance TPN₁₀

ENGIMMONIA

Some highlights of NH₃ EATS development

From lab testing/modeling:

- New chemical reaction schemes are necessary to describe the SCR reactivity in ammonia engine exhaust.
- ✤ Good sulfur tolerance of Fe-SCR at T>300°C.
- ✤ deN₂O catalyst materials for T<400°C not yet identified.</p>
- ✤ NH3 has the potential to form new (non-C) particles

From simulated marine engine exhaust:

Potential of 70-90% GHG emissions reduction with Tier III compliant NO_x possible if engine is tuned for low NH₃, low N₂O and high NO_x.

UPTOME/POSEIDON

Methanol combustion emission challenges

- LP vs HP approach
- Pilot quantity
- Low cetane number (CN = 3)
- Low NOx but PN and HCHO may be issues

100	Abnormal combustion	Engine Load	Methanol Share	Effect	Cause
80 37 BTE / %) 60 0 33 40 35 33 32 32 20 228 22 Part	37 CR = 18, TC RS = 1400 1/min	Low	Low	Poor Combustion Reduced BTE	Evaporative Cooling & Lean Methanol-Air Mixture
	BTE / %) 38 37 35 33 34 35 32 34 35 32 34 35 32 34 35 32 34 35 32 34 35 32 34 35 36 37 Misfire	Increased	Increased	Misfire Roar Combustion	 In methanol rich atmosphere diesel is not compressed to ignite. Misfire leads to an unburned charge. In the following cycle, a highly reactive premixed mixture is formed by the unburned diesel, methanol in the residual gas and injected fuel.
	- 22 Partial burn Wang 2015	Increased	Decreased	Reliable Diesel Ignition	Long ignition delay period leads to fast conversion of the premixed methanol mixture.
0-	0 20 40 60 80 100 Methanol share / % (m/m)	Full	Decreased	Abnormal Combustion	Premixed methanol autoignition before diesel injection.

REALCHEM

REALCHEM: <u>Real</u>-world emission Experiments and comprehensive Assessment of Low-carbon fuels: towards <u>Clean Hard-to-Electrify</u> traffic <u>Modes</u>

- Produce scientific data on the characteristics of emissions from low-carbon fuels in the Hard-to-Electrify transport modes
- Understand the effect of introducing lowcarbon fuels to the developing technology matrix on human health, climate, and the environment
- Help technology developers and users to understand the emission formation and reduce the harmful pollution from engines using low-carbon fuels

REALCHEM

REALCHEM project structural overview

THERMODYNAMICS AT WORK

ARISTOTLE UNIVERSITY SCHOOL OF MECHANICAL ENGINEERING

Prof. Leonidas Ntziachristos Director **e:** leon@auth.gr https://lat.eng.auth.gr

