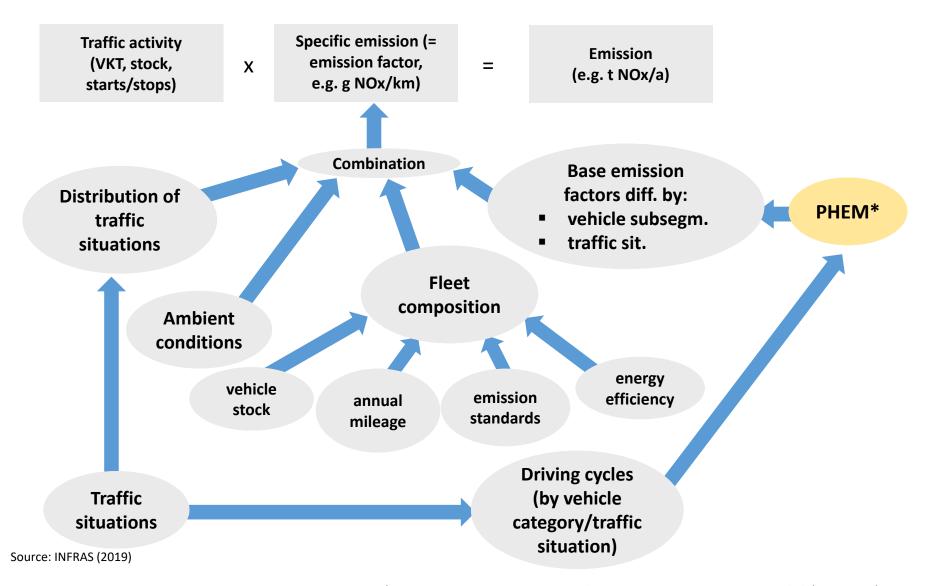


Benedikt Notter

Handbook of Emission Factors for Road Transport (HBEFA) 4.1

ERMES Meeting, Thessaloniki, May 14, 2019



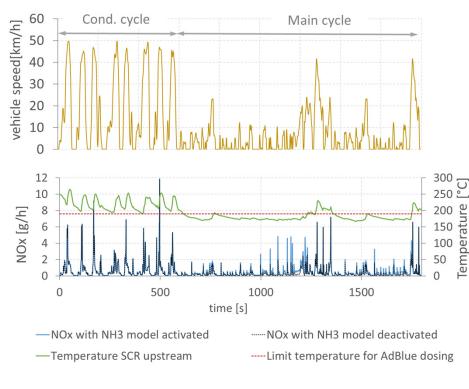
HBEFA 4.1 – Focus of the new version

Besides the usual update of EF based on new measurements, the new features in HBEFA 4.1 mainly have to do with:

- Alternative drivetrains, especially electric vehicles (BEV's, PHEV's), but also gas vehicles (CNG)
 - → as a consequence, need to consider upstream emissions
- Improvement of NOx EF, which receive increased attention due to the Dieselgate scandal: e.g. taking into account SCR state on entry into a traffic situation, NH3 storage in SCR catalysts, software updates
- → A pragmatic implementation strategy was necessary to keep complexity at a level acceptable to the users
- → see poster presentation of HBEFA 4.1 at the TAP conference

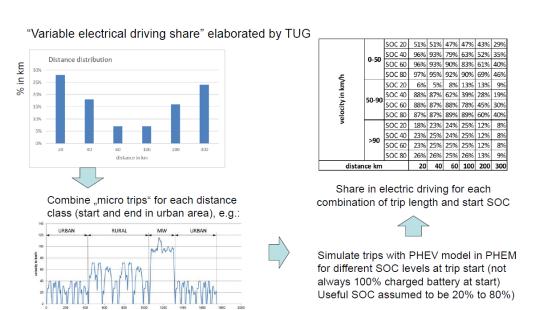
Basic structure of HBEFA

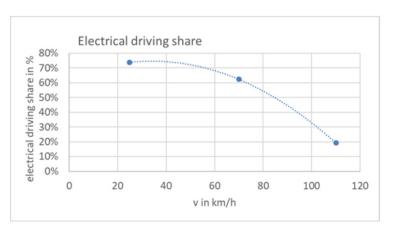
Revised driving cycles


- All driving cycles in HBEFA 4.1 have been revised based on new realworld driving profiles (from Germany, Sweden, Switzerland, Hungary, and Italy)
- The new cycles show a tendency towards a lower average speed, but higher dynamics (RPA)
 - → this in tendency leads to higher consumption and emission factors

VehCat	Ratio_duration	Ratio_v_ave	Ratio_RPA	Ratio_p_stop
PC	130%	96%	105%	101%
LCV	133%	96%	104%	100%
Coach	109%	96%	117%	109%
UBus	98%	100%	111%	91%
MC	122%	95%	109%	153%
HGV	101%	96%	118%	102%

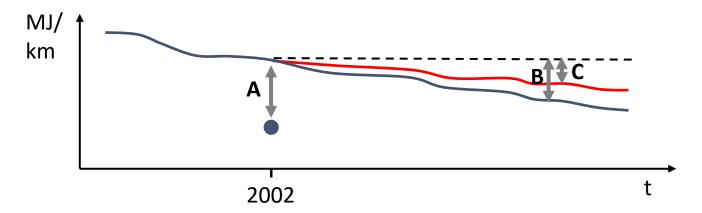
Source: INFRAS based on Steven (2019)


"Conditioning cycles"


- «History» of a trip influences the state of the SCR catalyst on entry into a traffic situation and thus the NOx emission level.
- Modelling individual trips would increase complexity and calculation intensity disproportionately
- Therefore, «conditioning cycles» are used, i.e. statistically determined typical «pre-cycles» for every cycle modelled in PHEM

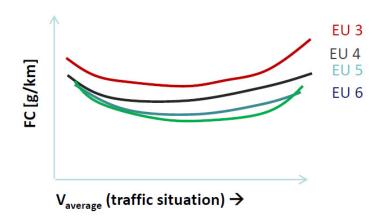
Electrical driving share of PHEV's

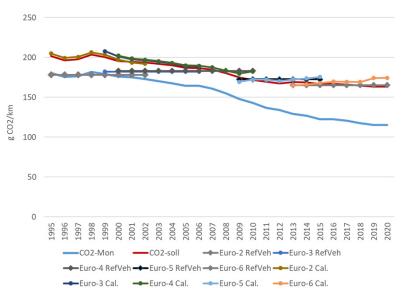
- Same basic problem depends on individual trips.
- TU Graz combined «micro trips» to typical trips in different distance bands and derived a relationship between average speed and electric driving share
- This is considered in HBEFA at the level of the road category (MW/ rural/urban)



Source: TU Graz (2018)

Energy consumption of PC up to HBEFA 3.3


- Fuel consumption was modelled in PHEM for all HBEFA traffic situations plus NEDC for 2 reference vehicles (P/D) registered in 2002
- Consumption factors of new registrations were then scaled using the following parameters:



- A = "Base correction" → level correction, accounts for national fleet compositions
- **B** = Annal reduction rate, based on CO2 monitoring
- C = B * "Use factor" = real-world share of reduction

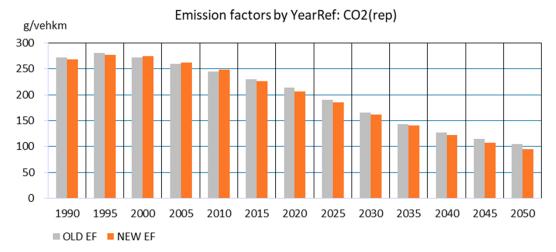
Energy consumption of PC in HBEFA 4.1

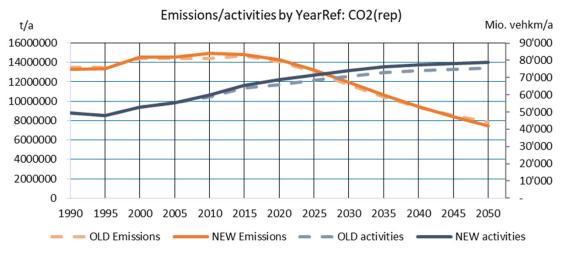
- Reference vehicles for all technologies (B, D, CNG, PHEV,...) and emission standards
- Country-specific calibration based on:
 - CO2 monitoring
 - Real-world excess based on analysis of fuel logs (e.g. Spritmonitor)
 - modelled real-world consumption: weighted average of traffic situations and shares of emission standards in new registrations

Sources: TUG, INFRAS 2018

WTT CO2e emissions

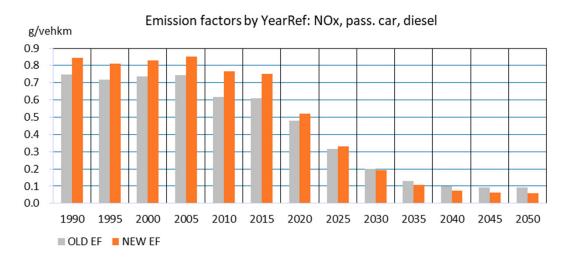
INFRAS

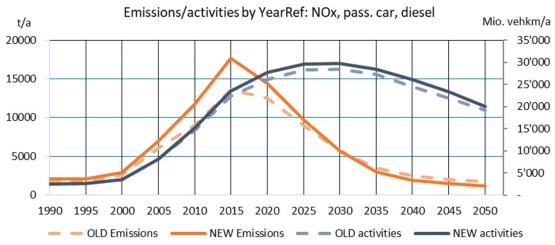

- No direct emissions from electricity or biofuels however, relevant indirect (upstream) emissions depending on the mix of production types
- Therefore WTT (Well-to-tank) emission factors for CO2 are available in HBEFA 4.1
- Based on average EU or (optionally) country-specific mix of production types well-to-Tank



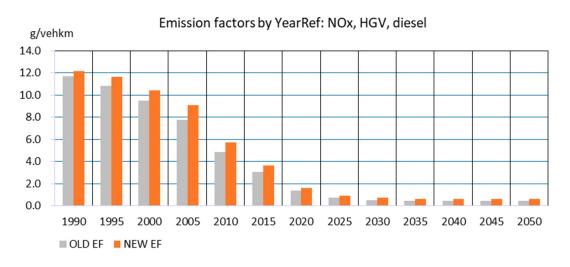
Other new features

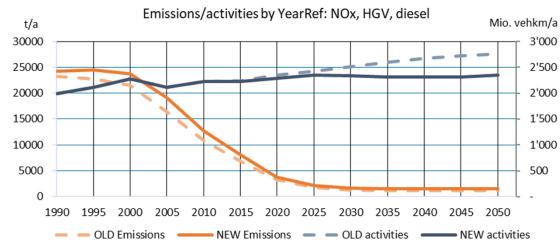
- Changes in hot EF (see following slides) due to:
 - new driving cycles
 - new PHEM version (incl. new gearshift model, new NH3 model, new vehicle parameter from CO2 project etc.)
 - new ageing/deterioration functions for catalysts
 - new functions for ambient T dependency of NOx emissions of diesel PC and LCV
- Revised cold start and evaporation EF (COPERT 5)
- Revised EF of non-regulated pollutants
 - → PM-nonexhaust now also in Public Version
- New traffic situations: LOS 5 ("Heavy stop+go"), 30 km/h speed limits on main roads


HBEFA 4.1 – Changes in EF and emissions: CO2 (Switzerland, preliminary results)



- Only slight changes in total levels, since CO2 is calibrated based on fuel sales
- Changes in the totals are therefore due to changes in VKT statistics rather than HBEFA


HBEFA 4.1 – Changes in EF and emissions: NOx, PC diesel (Switzerland, preliminary results)



- Significant increase of EF of diesel PC and LCV, except the newest emission standards (i.e. from Euro 6c)
- In early years compensated by lower EF of petrol PC

HBEFA 4.1 – Changes in EF and emissions: NOx, HGV diesel (Switzerland, preliminary results)

 Moderate increase of Nox EF and emissions over entire time series and most subsegments

Thank you for your attention!

DI. DEHEUIKI NULLEI - DI. DHAH CUX	Dr.	Benedikt Notte	r Dr.	Brian (Cox
------------------------------------	-----	-----------------------	-------	---------	-----

Dr. Hans-Jörg Althaus

Senior project manager Transport and environment Consultant
Transport and environment

Associate partner
Transport and environment

INFRAS Sennweg 2 3012 Bern benedikt.notter@infras.ch INFRAS
Sennweg 2
3012 Bern
brian.cox@infras.ch

INFRAS Sennweg 2 3012 Bern

hans-joerg.althaus@infras.ch