Progress Towards a Unified Storage Solution for Remote Emissions Sensing Data

James Tate and Chris Rushton

ERMES Remote Sensing database

1368609 vehicle passages in database

Manage campaigns
Manage sites
Manage instruments
Manage institutions
Search VehiclePassages

Tate, J., Gian-Marco, A., De la Fuente, J., McClintock, P., Gentala, R., Hausberger, S., Jerksjö, M. 2019. Contribution of vehicle remote sensing to inservice/real driving emissions monitoring - CONOX Task 3 report. Commissioned by the Federal Office for the Environment (FOEN), Switzerland. <u>https://www.ivl.se/download/18.34244ba71728fcb3f</u> <u>3fa5b/1591705759730/C295.pdf</u> [Accessed 12/05/2021]

Borken-Kleefeld, J., Bernard, Y., Carslaw, D., Sjödin, A.,

© 2021 - IVL Swedish Environmental Research Institute

CARES Project The data infrastructure challenge

CARES Work Package 2 CARES The data infrastructure challenge **CITY AIR REMOTE EMISSION SENSING** The need for a unified, flexible solution **EVOLVING DATA** FORMAT from multiple providers Break in DIFFERENT **INSTRUMENTS** DATA CONSISTENCY (data format) between campaigns Move to a UNIFIED, FLEXIBLE **DATA STORAGE** SOLUTION >> Limited archiving of CARES the opportunity DIFFERENT **SUPPLEMENTARY STAKEHOLDERS INFORMATION** REQUIREMENTS (meta-data etc) **Current Practice** LIMITED COMPATIBILITY e.g. Internet of Things

Data Journey Traditional Remote Sensing

CARES CITY AIR REMOTE EMISSION SENSING

Demonstration of the

DEVELOPMENT CARES DATABASE INTERFACES

CARES Work Package 2

Data Interface

- Data can be uploaded from a local file using familiar operating system file browsing systems
- Headings are updated to standard form using pre-configured templates
- Manual heading transformation is implemented but is very time consuming to use
- Basic statistics are applied to the data set comparing it to the data already in the database
 - Midpoint ratio checks that the data is broadly aligned
 - Kolomogorov Smirnov (K-S) test for two samples applied
 - Thresholds are determined and applied

Select Data to Upload				
File to upload				
Drag and drop file here Limit 200MB per file • CSV				
Browse files				
conox_upload_test_goth X 0.7MB				

Variable	Midpoint Ratio	KS-Statistic	p-value	Overall RAG
Euro 3 Petrol PC				
NO:CO2	1	0.31	0.13	Green
HC:CO2	1	0.07	1	Green
CO:CO2	1	0.14	0.93	Green
Euro 5 Diesel PC				
NO:CO2	1	0.18	0	Amber
HC:CO2	1	0.05	0.85	Green
CO:CO2	1	0.07	0.52	Green
Fleet Dynamics				
Speed	0.97	0.08	0	Amber
Acceleration	-3.91	0.15	0	Red
VSP	1.58	0.07	0	Amber

CARES Work Package 2 Data Interface

- The NO:CO2 ratio in the sample data set only met Amber conditions
- We can investigate this using a built in data viewer
- Test data (yellow) is different from reference data (blue) but an eyeball confirmation tells us that they are likely equivalent
- Data that is added to the database will still have amber status attached to it
- Future users can determine whether they accept amber or red rated data
- These tests can be performed for all pollutants
- Graphics can be easily saved directly from the interface

Graph parameters

CARES Work Package 2 Data Interface

- The acceleration parameter did not meet the amber or green criteria
- Data viewer shows us that there are more lower and negative acceleration values in the test data set
- User decision must be made as to whether this is caused by test location or by some error in the data
- If data is added to the database without modification it will be flagged as red.

80

Speed

Future outlook and closing remarks

CARES Work Package 2

Future Work – Remote Sensing

- Improving scientific basis for upload decision
- Improving the user interface for easier interaction
- Include Office 365 authentication
- Publish to online platform using Azure App Service
- Increasing the content of the database
 - Currently a small segment of CONOX
 - Plan to include all CONOX data
 - CARES characterisation and city demo data as available
- Integrate data quality control checks
 - Basic functions already developed as part of WP2
 - Investigate using natural language processing to improve quality of text based fields (e.g. standardised naming conventions)
 - Sense checking Euro standard

Work Beyond CARES Future Work – More New Methods

- Closer integration of database with instruments
 - IoT connectivity
 - Increased stakeholder access
 - Larger instrument networks
- Improved collaboration space
 - Azure platform offers huge potential to work collaboratively
 - New tools can be developed to take advantage of new data handling approach
 - Secure environment to test new ideas
 - Bespoke dashboards for different stakeholders

