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Introduction to Airparif and Île-de-France Mobilités

► Airparif, Regional Observatory of Air Quality in Île-de-France (Paris 

Region) since 1979

 Accredited by the French Ministry of Environment

 Missions: monitoring, understanding and analysing, assessing and

supporting, informing

 Complementary tools: fixed stations, inventory, modelling, field

campaigns

► Île-de-France Mobilités, local public authority organizing public 

transportation

 Imagines, organizes, finances public transportation for the whole

region

 Manages transportation modernisation programs
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Objectives of the study

► For Airparif

Quantifying the uncertainties of emission factors used in the emissions inventory and in 

pollutant concentrations modelling

► For Île-de-France Mobilités 

Committed to ecological transition, will to improve air quality and reduce greenhouse gas 

emissions, interest in ensuring that bus technological choices actually meet the expected 

improvement 

► More generally, for the scientific community

Real-world emissions for buses not widely documented

Setting standards beyond Euro VI requires a good knowldege on current real-world emissions
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Objectives of the study

More specifically:

► Characterize emissions ranges encountered in Île-de-France for the selected bus 

technologies, for real operating conditions with passengers: 

 Euro IV diesel, Euro VI diesel, Euro VI hybrid, Euro VI CNG

 For the atmospheric pollutants NOx, CO, Particle Number (PN),

and the GHG CO2

► Analyze how certain parameters influence emissions

► Compare with emissions factors used for modelling

► Contribute to point out some operational levers to reduce pollutant emissions
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Relevance of our work to current EU policy

► For AIRPARIF, it is important to have as much precise EF as possible in our models to provide qualitative 

information on:

 Hourly air quality concentrations at every point throughout the region, thus assess whether the

national air quality standards are met

 Air quality concentrations forecasts regarding different policy scenarios aiming at reducing air

pollution

► For public transport and manufacturers, this work provides information on the engine performance in real 

bus service conditions:

 Allows for investment decisions on the best available bus technologies, to reduce air pollution

 Gives the opportunity to manufacturers to improve their technology on certain operating conditions,

to reduce air pollution
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Instrumentation

► AVL M.O.V.E GAS PEMS 492 iS: NOx, CO, CO2

► AVL M.O.V.E PN PEMS 496 iS: PN > 23 nm

 Measure frequency: 1 Hz

 Sampling lines: 5m, 6 and 4 mm

 PN PEMS dilution ratio: 6:1

 Maintenance frequency: 1 to 2/week

 Sampling probe: 20 cm from exhaust

► Exhaust Flow Meter (EFM)

 31 cm from sampling probe

► Vehicles and engine parameters with CAN connection (OBD or FMS)

 Vehicle and engine speeds, coolant temperature, fuel rate if available

► GPS and meterorological data
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Instrumentation

Passengers security ensured by specific technical choices approved by the manufacturers

and the local public authority: 

► load distribution, fixations, insulation against exhaust gas leaks, electrical conformity, fire safety
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Automation

 measurement of cold start at the beginning of the service

Automation required because:

► Intensive measurement over multiple weeks at various locations and schedules

► Not possible to keep the devices measuring continuously (potential damage)
 Automatic software routine to switch between measurement and standby states
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Tested buses

AIRPARIF | 04-02-2021

► 28 different buses

 2 buses for each bus type
(Euro standard+manufacturer)

► 16 measurement campaigns

 2 buses/campaign

 5 days installation

 State authority check

 2 week campaigns (10 days)

 3 days uninstallation

Euro IV Euro VI

Hybrid

CNG 6 buses

2 EGR

6 SCR+DPF

4 SCR+EGR+DPF

4 SCR+DPF

2 SCR+EGR+DPF

4 SCR+DPF



13

Operating conditions: bus lines
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11 bus lines

► 5 within Paris, <13 km/h

► 3 in the inner suburbs (PC), ~14-22 km/h

► 3 in the outer suburbs (GC), ~14-22 km/h

Data composed of:

► Deadheading (including cold start)

► « Trips » : from start to end of a single bus line 

► Idle times
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Operating conditions: temperature
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Hybrid CNG

Tests throughout the year, with very variable meteorological conditions, 

and globally colder for CNG buses
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Emissions by bus technology: PN

Hybrid

÷50 to 80 (average)

► Significant gap between Euro IV and Euro VI 

buses

► Great variability within Euro VI categories

► Statistically significant differences between

Euro VI diesel and hybrid, diesel and CNG, 

but similar ranges

► Results for PN>23nm

CNG
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Emissions by bus technology: PN

Hybrid

÷50 to 80 (average)

► Significant gap between Euro IV and Euro VI 

buses

► Great variability within Euro VI categories

► Statistically significant differences between

Euro VI diesel and hybrid, diesel and CNG, 

but similar ranges

► Results for PN>23nm

CNG

Logarithmic scale
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Emissions by bus technology: PN

► For similar operating conditions: mostly higher PN emissions for the tested CNG buses (1.5 to 7 times on average)

► But very different Euro VI diesel buses  can have higher PN emissions than CNG (at least twice higher on average)

CNGDieselCNGDiesel

Parisian bus lines Suburban bus lines

Bus number ID
Bus number ID
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Emissions by bus technology: NOx

► Significant decrease in emissions from

Euro IV to Euro VI diesel buses

► Even better performances for hybrid buses

► Very low variability for CNG buses

Hybrid
CNG
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► Difference in NOx emissions between Euro VI 

diesel buses

► Opposite behaviour for PN emissions: 

NOx/PN trade-off

► One hypothesis not tested in this study: 

different after-treatment systems

Emissions by bus technology: NOx/PN trade-off
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Emissions by bus technology: CO

► Very variable CO emissions within

Euro IV buses

► Lower CO emissions for Euro VI 

diesel and hybrid buses

► 2 CNG buses emitted high CO 

emissions

Hybrid
CNG
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Emissions by bus technology: CO2

► -17% from Euro VI diesel to hybrid

► Slight decrease from Euro IV to Euro VI 

buses

► Similar ranges between Euro VI diesel 

and CNG

Hybrid
CNG
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Methodology and significant parameters

► Gradient-boosting model and explanatory analysis with a SHAP approach (for Euro IV 

diesel, Euro VI diesel, Euro VI hybrid buses), in addition to specific analysis (average

speed, atypical events…)

► Most influential parameters on pollutants emissions:

 Euro standard

 After-treatment systems failures

 Exhaust temperature

 Ambient temperature

 Cold start

 Driving style

 Average velocity
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Example: exhaust temperature

► Indicator of the operating conditions of the SCR and DPF (optimal if >200°C)

► High NOx emissions if exhaust temp<200°C for Euro VI diesel buses
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Example: exhaust temperature

► Indicator of the operating conditions of the SCR and DPF (optimal if >200°C)

► High NOx emissions if exhaust temp<200°C for Euro VI diesel buses

► +0.01 g/s of NOx emissions if exhaust temp<200°C 

(about 3 g/km for an average velocity of 12 km/h)

Exhaust temperature (°C) Exhaust temperature (°C)
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Example: ambient temperature

► Low ambient temperature  suboptimal combustion conditions, or after-treatment systems functioning

conditions (at hot engine and cold start)

► NOx emissions for T<10°C : 

 +40% for Euro IV diesel buses

 +80% for Euro VI diesel buses (remained lower than Euro IV)

 +13% for Euro VI hybrid buses

 No significant effect on CNG buses

Ambient temperature (°C) Ambient temperature (°C)
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Example: cold start

► Indicator : coolant temperature <70°C

► For all buses: duration 14 to 35 minutes (3 to 10 km), median 20 min (6 km)

► NOx emissions 3 times higher on average at cold start for diesel and hybrid buses

► CNG buses: NOx spikes if start at Tamb<8°C, otherwise no spikes measured
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► Moslty influent for Euro IV buses : 
faster trip  lower emissions

► From 8 to 20km/h, Euro IV

 NOx : -42%

 PN : -38%

 CO2 : -27%

► Hybrid buses emissions less sensitive 

to variation in average velocity (CO2

and NOx)

Example: average velocity

Euro IV buses

Average velocity (km/h)

Average velocity (km/h)
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Example: after-treatment systems failures

► Urea injection system failure or lack of urea for SCR: 

 20 to 100 times more NOx emissions

 Reduced PN emissions

► Very rare events (happened on two Euro VI diesel buses) Urea injection system 
failure
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Parallel with COPERT 5.2

► In the specific experimental conditions of this

study, COPERT underestimates NOx emissions

of the Euro IV and VI diesel buses tested, 

while remaining in the encountered ranges 

(first quartile)

 Euro IV diesel buses : median 1.6 times

higher than COPERT 5.2

 Euro VI diesel buses : median 2.8 times

higher than COPERT 5.2
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Velocity classes

Boxplots: experimental NOx EF

Orange points: COPERT NOx EF
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► Globally, lower emissions from Euro IV to Euro VI, with a 
great variability depending on various factors within Euro VI 
standard

► Proposal to share emission data to ERMES

► More pollutants to investigate: PN<23nm, NH3, CH4…



Thank you for your attention

Any questions?


