

ERMES PLENARY 2021

Non-exhaust and Non-road Transport Emissions

PM and PN Emissions from Light-Duty Vehicle Brakes

Theo Grigoratos 26 MAY 2021

<u>Outlook</u>

- Short background on brake emissions
- Literature based LDVs brake PM EFs
- Development of a lab-based method
- Preliminary PMP-based PM and PN EFs
- Options to reduce brake emissions

Exhaust vs. Non-exhaust Emissions

1. EFs are based on type-approval tests while real-world exhaust PM emissions are expected to be higher – Data better reflect the situation in countries with newer fleet composition

2. Question regarding the underlying assumptions – Lack of standardized methods for characterizing non-exhaust emissions

Despite the reported differences non-exhaust emissions have become much relevant for air pollution

Brake Emissions – Importance

- ✓ Brake PM₁₀ and PM_{2.5} are approximately 3 times higher compared to tire PM₁₀ and PM_{2.5} (road wear not included)
- Projections show similar brake/tire emissions ratio in 2030; however, EFs have not been updated recently – Furthermore projections do not take into account technological improvements and future technologies that will heavily affect – at least brake emissions

Despite the reported differences – which reflect different methodological approaches – brake emissions make up a significant fraction of non-exhaust emissions

LDV Brake Emission Factors – Legacy

MOVES – Sonntag et al. (2020) HEI Virtual Workshop on non-tailpipe PM emissions and health

1. Emission Inventories – Require accurate emission rate input data and do not take into account differences and technologies

2. Receptor Modelling – Requires the application of unique chemical tracers

3. Brake dynamometer – No standardized or commonly accepted method available, yet

4. On-road measurement – Very challenging to isolate brake (or other non-exhaust) emissions

<u>UNECE Mandate – Method Development</u>

- ✓ June 2019: The GRPE approves the ToR mandating the PMP IWG to develop a lab-based method for sampling and measuring brake particle emissions
- ✓ January 2020: Several UNECE GRPE Contracting Parties request the PMP IWG to consider a possible use of the proposed method as a regulatory tool

PMP Method – Fundamentals

Brake Emissions Method – Main Specifications

- Novel WLTP-Brake Cycle reflecting real-world driving and braking conditions
- ✓ Dynamometer specifications and checks (i.e. background concentrations, dyno climatic controls, brake enclosure design, etc.)
- Brake specifications (temperature measurement method, defined bedding-in procedure, etc.)
- ✓ Definition of vehicle-specific parameters (test inertia based on the force distribution specified by the OEM, options for correcting for parasitic vehicle losses)
- ✓ Well defined cooling protocol reflecting real world vehicle temperature profile data
- Measurement related specifications for PM and PN (methods, instrumentation, calibration, etc.)

So far, the method development targeted brakes from ICE LDVs

- ✓ Brakes from Hybrid Light Duty Vehicles
- ✓ Brakes from Full Electric Light Duty Vehicles
- ✓ Brakes from Medium and Heavy Duty Vehicles

Brake PM EFs – Preliminary PMP Data

ICE Data (LS): Mamakos et al. 2019; Zum Hagen et al. 2019; Hagino et al. 2019; Agudelo et al. 2020; Mamakos et al. 2021; Hesse et al. 2021; Stanard et al. 2021, PMP TF2 unpublished data

ICE Data (NAO): Hagino et al. 2019; Agudelo et al. 2020; Stanard et al. 2021

Hybrid Data: Stanard et al. 2021

 ✓ Presented EFs are from *a limited number* of tests following (most of) the PMP specifications

- ✓ EFs were derived for GCI discs which are the most commonly available type in the market – Coated discs show much lower EFs (Hesse et al. 2021)
- ✓ Tested brakes cover a wide range of front applications featured in vehicles with different mass (1200-2600 kg)
- ✓ PM_{2.5} is approximately a third of PM₁₀ emissions regardless the type of pad
- Previously reported EFs underestimate brake PM emissions at least for LS brakes

Brake PN EFs – Preliminary PMP Data

- ✓ PN EF of 2-6x10⁹ #/km per brake have been reported when typical European brakes (LS Pad / Grey Cast Iron Disc) are tested over the WLTP-Brake cycle. Estimated overall PN emissions at vehicle level strech between the high range of 10⁹ #/km and the low- or mid- range of 10¹⁰ #/km
- ✓ PN EF of 1-3x10⁹ #/km per brake have been reported when GCI NAO brake couples are tested over the WLTP-Brake cycle or the CBDC. Overall PN emissions at vehicle level are expected to lie at the medium range of 10⁹ #/km
- ✓ A Hybrid vehicle showed the highest PN emissions (3-4x10⁹ #/km) among vehicles with NAO pads tested over the WLTP-Brake cycle (Agudelo et al. 2021)
- Overall PN emission levels from modern brakes seem to be relatively low compared to existing exhaust limit for solid particles

Options for Reducing Brake Emissions

Regenerative Braking and EVs

Friction Materials – LS vs. NAO

(Sin et al. – EuroBrake EB2021-EBS-012

Drum Brakes

(Sin et al. – EuroBrake EB2021-EBS-012)

Brake Disk Coating (Eibl et al. – EuroBrake EB2021-MDS-003)

Which are the main options for reducing brake emissions?

Brake Sizing and Temperature Control (Sin et al. – EuroBrake EB2021-EBS-012)

Brake Filters (Sin et al. – EuroBrake EB2021-EBS-012)

Thank you

© European Union 2020

Unless otherwise noted the reuse of this presentation is authorised under the <u>CC BY 4.0</u> license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.

