

Maritime air emissions and enforcement: The SCIPPER and EMERGE projects

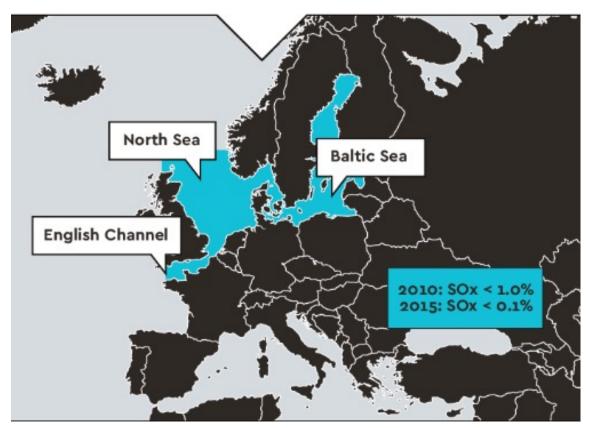
Prof. Leonidas Ntziachristos Mechanical Engineering Dept. Aristotle University Thessaloniki

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement Nr.814893

Presentation at the ERMES Plenary May 26, 2021

Background

Emission Control Areas (ECAs) in EU waters


- Baltic Sea
- North Sea
- English Channel

Limits

- 1.1.2015 ECAs: 0.1% max FSC
- 1.1.2020 Globally: 0.5% max FSC
- I.1.2021 Baltic and North Seas ECAs: NO_xTier III for vessels keeled 1.1.2016 on

Developments

 On-going discussion for inclusion of the Mediterranean Sea as a SO_x - ECA

Response

Some options to meet new emission standards:

- Low sulfur fuel and NO_x aftertreatment
- Heavy fuel and both NO_x and SO_x aftertreatment (scrubbers)
- LNG

. . .

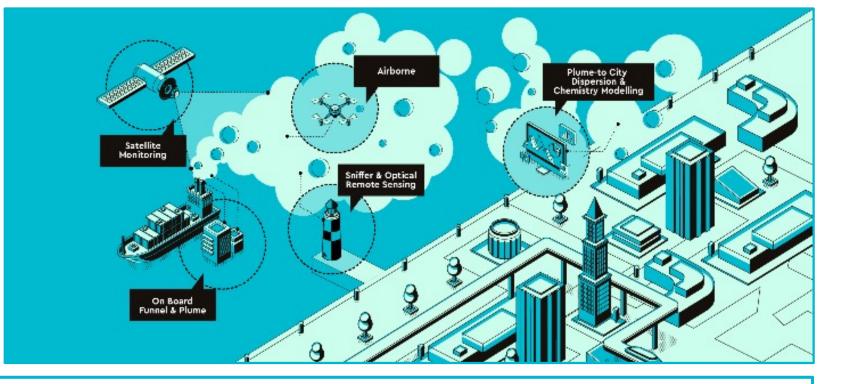
• Other fuels, like methanol, electrification, etc.

Main Question to be responded by SCIPPER:

How will authorities make sure that correct fuel / proper aftertreatment are being used?

Higher costs may

motivate wrong-doing

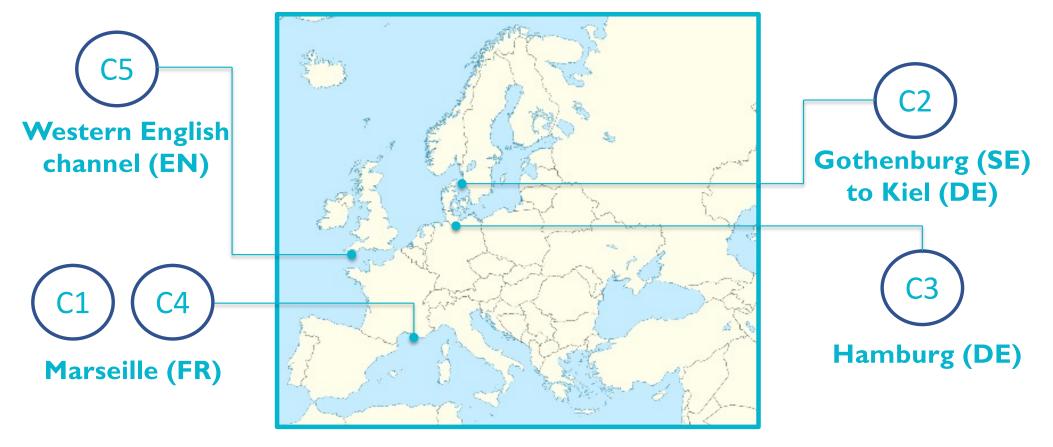


Concept

Real-world deployment of various monitoring techniques

Implementation of 5 experimental campaigns at different locations

Application / validation / comparison of various emission measurement and monitoring techniques for emission standards compliance checking purposes


Determination of the impact of shipping on air quality at coastal and harbor level

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement Nr.814893

tone into the int

Experimental Campaigns Overview

THE Scipper Project

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement Nr.814893

Ca Stepper Measurement Campaigns

Implementation of Measurement Campaign in Marseille

Remote compliance monitoring of FSC in ships in and outside the port before global FSC regulations

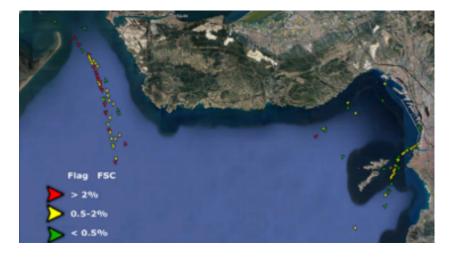
Lough Free Arms Free A

- First assessment of state-of-art remote and UAS comparability
- Assessment of state-of-art remote techniques including uncertainty characterization
- Input to AQ emissions before global FSC regulation

21 plumes measured by drones

30 plumes measured by a sniffer boat & 17 for intercomparison on SO_2 and NO_x

Air quality measurements at harbor sites



This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement Nr.814893

Ca Stepper Measurement Campaigns

FSC and NO_x emissions detection in Marseille

Sniffer boat

- Prior to the Sulphur cap application
- Measurements to be repeated after the global new limits' enforcement

Ca Stepper Measurement Campaigns

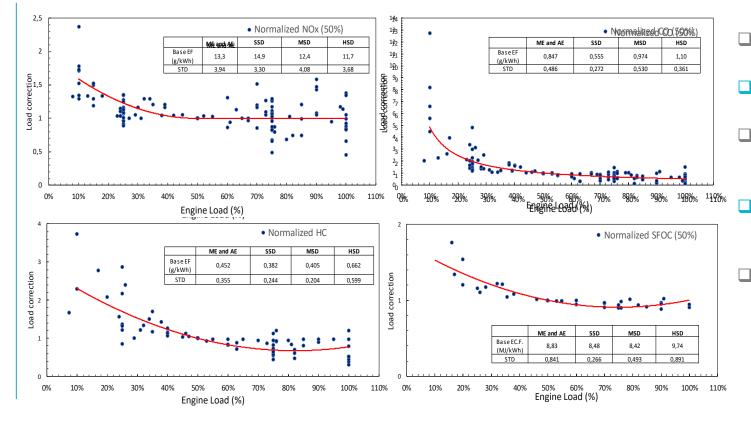
Implementation of Measurement Campaign in Wedel/Hamburg

Participation from NL, SE, DK, DE

5 Sniffer 2 UAS 2 DOAS 6 AIS I LASER-spectrometer

- 4 Particle sizers
- 2 Aethalometers
- 5 Meteo stations

- > 500 allocated plumes from 256 different ships (fixed sniffers)
- 65 plumes from 53 different ships (UAS measurement)
- 55 fuel samples from 32 selected vessels (waterways police Hamburg)
- I9 comparison experiments with artificial plumes (SO₂-CO₂ and NO-CO₂)
- Detailed scientific analysis in progress

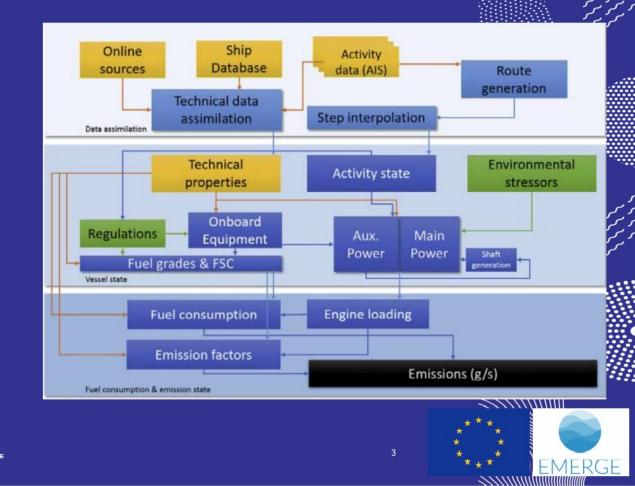

Ca Methods Overview (On-going assessment)								
Technique	On-Board	Small UAV	Patrol-Vessel	Aircraft/Large UAV	Fixed Station	Fixed station	Optical - Satellite	
Method	Sensors		Sniffers				Remote Optical	
Most widespread detection techniques	SO _x (IR or DOAS) NO, NO ₂ (Electrochem.) CO ₂ (NDIR) BC/PN (various)	SO ₂ (Electrochem., DOAS) NO, NO ₂ (Electrochem.) CO ₂ (NDIR)	S	SO ₂ (UV Fluorescence NO, NO ₂ (CLD) PN (CPC) CO ₂ (NDIR, CRDS)	,	SO ₂ (DOAS, IR Iradiance) NO ₂ (DOAS)	NO ₂ , SO ₂ (DOAS)	
Experience	Yes, Scrubber vessels	DK, FI, EMSA	DE, FR, SE	EMSA, BE, FI, (SE)	de, nl, se, dk, fi	DE	FI, GR, NL	
Flexibility in terms of monitoring location	On-board	Yes (restrictions)	Yes (restrictions)	Yes (restrictions)	No	No	No (5.5×3.5 km ² , depends on pass)	
Open Sea surveillance	Yes	No	Yes	Yes	No	No	Yes	
Availability of results	Can be on-line	Immediately	Immediately	After landing	Immediately	Immediately	Post-processing	
Suitable sites	vessels	line of sight (smaller harbour, canal,)				pping lane pole, bridge,)	Away from other major sources	
Operation time	24/7 (automated)	daylight	24/7	daylight	24/7 (automated)	24/7 (automated)	daylight/weather	
Resources (cost, personnel)/vessel	High	Low-Medium	Medium	High	Low	Low	Medium (currently processing-tedious)	

This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement Nr.814893

Cal Stepper Update of EFs for Ships

Load-dependent EFs development

NO_x EFs are higher for slow speed engines


- CO and HC are higher for highspeed engines
- EFs are in general high at low load areas and decreased with the load increase
 - For some pollutants and SFOC, full load emissions and EC are again increased
- □ New set of EF to be used for:
 - EEA/EMEP AEIG
 - STEAM Model

A STEAM model outline

The STEAM model

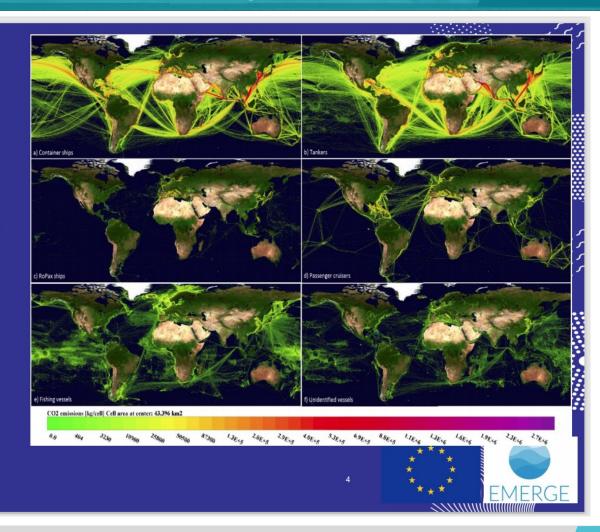
Overall structure

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

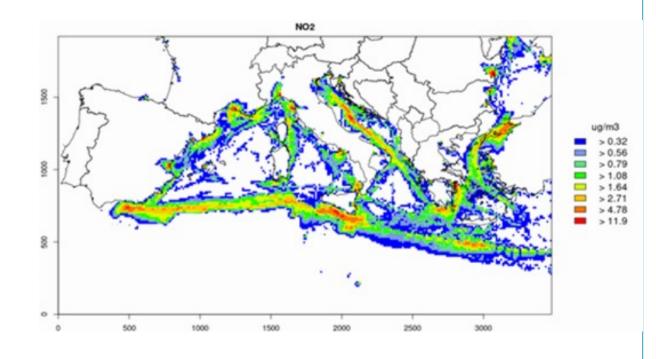
This project has received funding from the European Union's Horizon 2020 research and innovation programme under grant agreement Nr.814893

Ca Stepper Global marine emissions by STEAM

Example results on the predicted global shipping emissions

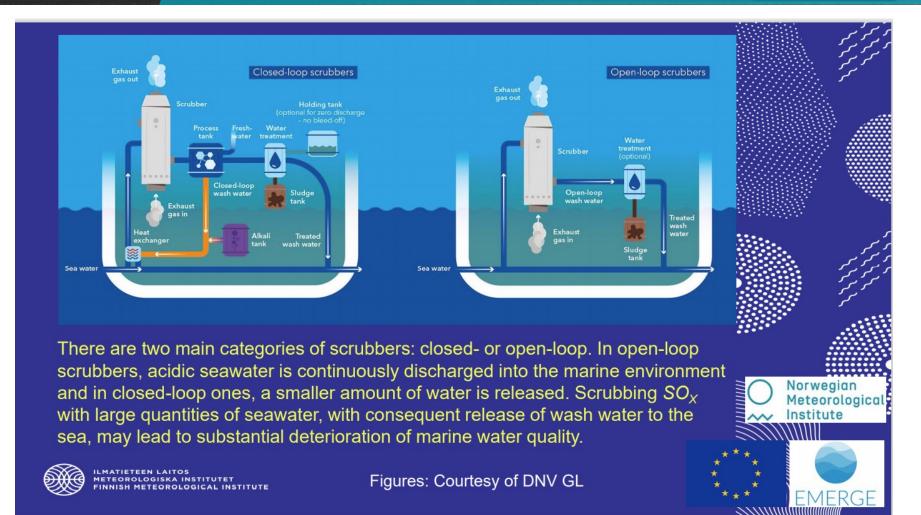

Figures show the shipping emissions of CO₂ (kg/area) for various categories of ships (container ships, tankers, RoPax, passenger cruisers, fishing vessels, unidentified vessels)

These results were computed based on 8 billion position reports from over 300 000 vessels.


Emissions of each vessel can also be addressed separately -> can be evaluated against measurements

ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

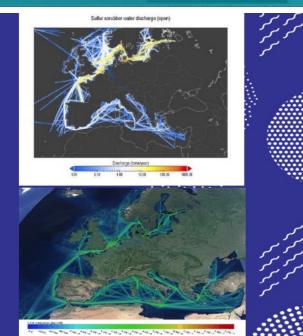
Ca Scipper AQ simulations


Impact of shipping on the concentration of air pollutants in the Mediterranean Sea, investigated by Chemistry Transport Model (CTM) simulations.

Lune inter and the

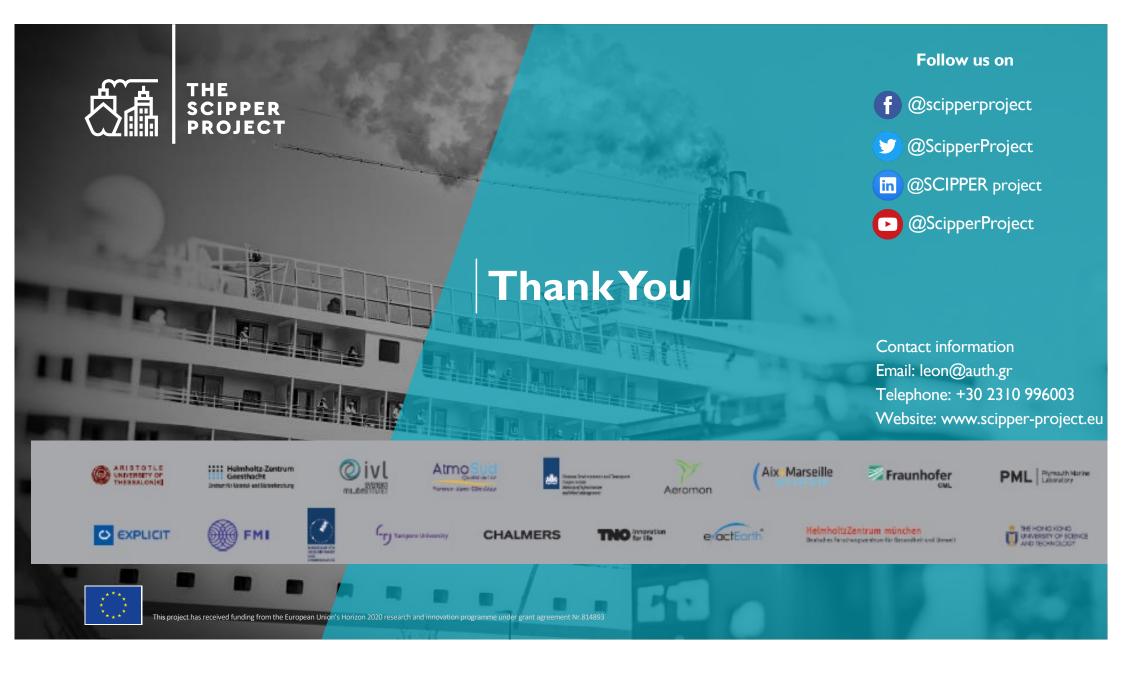
- Results for NO₂ concentrations in June 2015
- Calculation based on STEAM shipping emissions for 2015
- CMAQ model simulation on a 12 × 12 km² grid for the Mediterranean Sea
- Shipping lanes and important port areas are clearly visible

Ca Scrubber operation


Cal Stepper Integrated modelling

Integrated modelling of water and air

- Ship emission model STEAM: both discharges to water and emissions to air
- Dispersion of pollutants in air and water
 - Human health, climate effects, ecotoxicology
- Atmospheric models:
 - ✓ SILAM, WRF-CMAQ, CHIMERE, MEMO/MARS, etc.
- Water pollution models:
 - Currently partly separate models for dispersion and bio/geochemistry; EMERGE aims to integrate these
 - ROMS, HYCOM, Delft3D, OpenDrift; ERSEM, BFM; MERLIN-Expo, AQUATOX, MAMPEC
- Cost and benefit analysis model: GAINS model by IIASA


ILMATIETEEN LAITOS METEOROLOGISKA INSTITUTET FINNISH METEOROLOGICAL INSTITUTE

The predictions of the STEAM model. Above: The predicted washwater releases to sea, from open-loop SO_x scrubbing in ships in 2016. Below: Emissions of CO_2 from ships in 2011.

The colour codes indicate emissions in mass units (per annum) per computational grid area.

