

ALTERNATIVE FUELS FOR AVIATION EXPECTED ENVIRONMENTAL BENEFITS SUPPORTING POLICY LANDSCAPE

Prussi M.

The views expressed here are purely those of the authors and may not, under any circumstances, be regarded as an official position of the European Commission.

EC-JRC - Unit C.2 Ispra (IT)

Environmental impact of civil aviation

Why we need to decarbonise the sector

GHG impact of international aviation

- Before COVID pandemic, international civil aviation was consuming about 160 megatons (Mt) of fuel, corresponding to approximately 2.6% of GHG emissions from fossil fuel combustion.
- The sector was growing at a significant pace: before the COVID-19 crisis, ICAO forecasted that by 2050 international aviation emissions could triple compared with 2015.

https://www.icao.int/environmental-protection/Documents/EnvironmentalReports/2019/ENVReport2019_pg17-23.pdf

World passenger traffic evolution 1945 – 2021*

Commission

SAF for aviation

Alternative fuels for GHG impact mitigation

ICAO'S ASPIRATIONAL GOALS & BASKET OF MEASURES - CORSIA

- In 2016, ICAO/CAEP the Carbon Offsetting and Reduction Scheme for International Aviation (CORSIA).
- CORSIA requires airline operators to offset GHG emissions => SAF.

CORSIA CEF

- Historically, terms such as "alternative fuels" or "sustainable fuels" have been used in many instances to designate fuels produced from non-conventional processes and, consequently, lower environmental impact.
- CORSIA eligible fuel (CEF). A CORSIA sustainable aviation fuel or a CORSIA lower carbon aviation fuel, which an operator may use to reduce their offsetting requirements.
 - **CORSIA sustainable aviation fuel- SAF**. A renewable or waste-derived aviation fuel that meets the CORSIA Sustainability Criteria under this Volume.
 - CORSIA lower carbon aviation fuel LCAF.A fossil-based aviation fuel that meets the CORSIA Sustainability Criteria under this Volume.

ICAO'S ASPIRATIONAL GOALS

 ICAO/CAEP/LTAG TG is rediscussing the Long Term Aspirational Goal.

EU legislative landscape

- The European Green Deal (EGD): the overarching policy framework from the European Commission released in December 2019, aims to achieve a climate neutral continent in 2050.
- the **2030 Climate Target Plan**: adopted in September 2020 also urges to scale up efforts to improve the efficiency of aircraft, ships and their operations and to increase the use of sustainably produced renewable and low-carbon fuels.
- **Renewable Energy Directive** (REDII): pursue the decarbonisation of the economy, including the transport sector.
- ETS. CO2 emissions from aviation have been included in the EU emissions trading system (EU ETS) since 2012. The EU decided to limit the scope of the EU ETS to flights within the EEA until 2016 to support the development of CORSIA.
- **ReFuelEU Aviation**: legislative initiative to increase the SAF consumption in the EU.

Fig. 13. Sub-sectorial biofuels consumption forecasts within the three scenarios. (a) highlights the finding for the aviation sector. The 2030 MAIN scenario normalised value of 1.0 equals to 1.8 MTOE in absolute terms, as described by Table 1; (b) highlights the finding for the aviation sector when MSs' mandates are taken into account. The 2030 MAIN scenario normalised value of 1.0 equals to 5.9 MTOE in absolute terms, as described by Table 1.

Renewable and Sustainable forecasting the role of biofuel in EU transport published scenarios. 110715. of review 139, Energy Reviews, meta-analysis Chiaramonti, D

ASTM Certified Pathways

Fuels allowed for commercial flights

Alternative Fuels for aviation

uo **FU Delft and NRL hosted the "Workshop Aviation Fuels for Aircraft** (Oct.2020) Sustainable A Propulsion" (

ASTM certfied SAF

Table 1

TRL and FRL of the five ASTM-Certified pathways.

Process		TRL	FRL
Fischer-Tropsch Synthetic Paraffinic Kerosene	FT-SPK	6–8	6-7
Hydroprocessed Fatty Acid Esters and Free Fatty Acid	HEFA	9	9
Hydroprocessing of Fermented Sugars - Synthetic Iso-	HFS-SIP	7–8	5–7
Paraffinic kerosene			
Fischer-Tropsch Synthetic Paraffinic Kerosene with	FT-SPK/A	6–8	6-7
Aromatics			
Alcohol-to-Jet- Synthetic Paraffinic Kerosene	ATJ-SPK	7–8	7

Prussi, M., O'Connell, A., & Lonza, L. (2019). Analysis of current aviation biofuel technical production potential in EU28. Biomass and Bioenergy, 130, 105371.

Expected envirometnal benefits

GHG and other expected impacts

CORSIA methodology

Core LCA $[gCO_2e/MJ] = e_{fe_c} + e_{fe_hc} + e_{fe_p} + e_{fe_t} + e_{fefu_p} + e_{fu_t} + e_{fu_c}$

Default core LCA values of SAF production pathways approved by ICAO to date.

ILUC

- Direct Land Use Change Emissions (**DLUC**): land converted to produce the feedstock needed forfuel produciton.
- Indirect Land Use Change Emissions (ILUC): refers to the global marketmediated agricultural area expansion in response to the increased biofuel demand.
 - If crops grown on existing arable land are used to make biofuels and are diverted from food and feed production, then the gap in the food supply will be partly filled by the expansion of cropland, because of the necessity to replace the food production.
 - The expansion may happen in areas with high carbon stock such as forests, wetlands and peatlands.

Fuel Conversion Process	Region	Fuel Feedstock	Core LCA Value	ILUC LCA Value	LS _f (gCO ₂ e/MJ)
Fischer- Tropsch (FT)	Global	Agricultural residues	7.7		7.7
	Global	Forestry residues	8.3		8.3
	Global	Municipal solid waste (MSW), 0% non-biogenic carbon (NBC)	5.2	0.0	5.2
	Global	Municipal solid waste (MSW) (NBC given as a percentage of the non-biogenic carbon content)	NBC*170.5 + 5.2		NBC*170.5 + 5.2
	USA	Poplar (short-rotation woody crops)	12.2	-5.2	7.0
	USA	Miscanthus (herbaceous energy crops)	10.4	-32.9	-22.5
	EU	Miscanthus (herbaceous energy crops)	10.4	-22.0	-11.6
	USA	Switchgrass (herbaceous energy crops)	10.4	-3.8	6.6
Hydroprocessed esters and fatty acids (HEFA)	Global	Tallow	22.5		22.5
	Global	Used cooking oil	13.9	0.0	13.9
	Global	Palm fatty acid distillate	20.7	0.0	20.7
	Global	Corn oil (from dry mill ethanol plant)	17.2		17.2
	USA	Soybean oil	40.4	24.5	64.9
	Brazil	Soybean oil	40.4	27.0	67.4
	EU	Rapeseed oil	47.4	24.1	71.5
	Malaysia & Indonesia	Palm oil – closed pond	37.4	39.1	76.5
	Malaysia & Indonesia	Palm oil – open pond	60.0	39.1	99.1

Table 1. CORSIA Default Life Cycle Emissions Values for CORSIA Eligible Fuels

European Commission

Conclusions

Take home messages

Take-home messages

- Aviation is expected to rapidly recover from COVID-19 pandemic, continuing increasing its growth, with a significant associated environmental impact.
- Aviation is expected to rely on liquid fuels in the shot-medium term, expecially for the long-haul flights.
- At **international level**, **ICAO-CORSIA** is supposed to contribute to sector decarbonisation, by **required operator to offset their emissions**.
- Sustainable Aviation Fuels are considered an effective tool for the sector decarbonisation strategy.

Take-home messages

- At European level many legislative acts and initiatives are supporting the uptake of SAF.
- Sustainable aviation fuels (SAFs) as defined in CORSIA can reduce lifecycle GHG emissions by over 90%.
- However, while SAFs could play a major role in contributing to reducing aviation sector's GHG emissions on the basis of their per-MJ GHG reduction potentials, caution is needed as today cost barriers have to be overcome in order to ensure the large-scale deployment of SAFs, and the corresponding GHG emissions benefits.

Thank you

The views expressed here are purely those of the authors and may not, under any circumstances, be regarded as an official position of the European Commission.

© European Union 2020

Unless otherwise noted the reuse of this presentation is authorised under the <u>CC BY 4.0</u> license. For any use or reproduction of elements that are not owned by the EU, permission may need to be sought directly from the respective right holders.

Slide xx: element concerned, source: e.g. Fotolia.com; Slide xx: element concerned, source: e.g. iStock.com

