UNECE IWG A-LCA

Developing an harmonized methodology for automotive's future

Giuseppe Di Pierro – EC JRC C.4 Georgios Fontaras – EC JRC C.4

Agenda

General context

Timeline

- **Structure**
- Use phase SG4 status update

General Context

General Context Background

Life cycle assessment (LCA) is a method to estimate the material and energy flows of a product (e.g. transportation service) to analyse environmental effects over the entire lifetime of the product 'from cradle to grave'.

"LCA has been used in the automotive industry for more than 20 years, mainly as a means of identifying environmental hotspots and as an aid to prioritise areas of innovation" (Warsen and Krinke, 2013).

ISO 14040 series has been in effect since 2006, but the scope of the investigation is not standardized.

General Context

Japan and Korea proposed to GRPE to work on the clarification of methodologies for the assessment of life-cycle GHG emissions of automotive.

GRPE created a new Informal working group **A-LCA** under GRPE (ECE/TRANS/WP.29/GRPE/86/Rev.1)

The IWG is an **open structure** enabling the exchange of information and expertise among numerous members.

General Context Scope

Manufacturing

Developing an **internationally-harmonized** procedure to determine carbon footprint of different technologies, also considering energy use, from production to use and disposal as a **resolution** under the framework of WP.29

Raw material extraction

Helping **policy makers** in the decarbonization process and encouraging automotive industries to **reduce carbon footprint**

Reuse and remanufacturing

n_{er} scrap

Use

End Of Life Recycling

General Context

International activities in the context of A-LCA

French Décret/Arrêté modifying the conditions of eligibility of "Bonus Écologique" for new electrical vehicles in France

Introduction of an environmental scoring (upstream carbon footprint for a vehicle) based on a proposed formula - Vehicle concerned : M1 vehicle only

China Low Carbon Action Plan (CALCP) - LCA vehicle methodology under review is a non governmental research program initiated and organized by CATARC.

EC Provision: <u>common EU methodology</u>, to be developed by the Commission by 2025, for <u>assessing the full life cycle of CO2 emissions of cars and vans</u> placed on the EU market, as well as for the fuels and energy consumed by these vehicles.

Fuel Cycle

Timeline

IWG Structure

IWG Structure

w	ork areas	work elements	common	specific each area	common			
Life stages	Material production	Material & Material recycling 2	1	activity item and data	6			
	Parts production			activity item and data	Fuel & Energy Cycle			
	Inhouse parts production	Parts & Vehicle production	aspects					
	Vehicle assembly		Overarching aspects	act a				
	Use Phase	Use Phase 4		activity item and data				
	End of Life	End of Life 5)	activity item and data				
Verification methodology transparency and consistency, data qualification and plausibility								
Drafting 7 Drafting								

Sub-Groups (SGs):

- 1. Overarching aspects & verification
- 2. Material & material recycling
- 3. Parts & vehicle production
- Use phase
 End of life

- 6. Fuel & energy cycle
- 7. Drafting

Use phase – SG4 status update

Discussion items for SG4

- Scope definition
- Boundaries definition
- □ Level Concepts for SG4
 - □ Boundaries include in-use phase, regular consumptions and maintenance
 - Discussion on elements to be considered (charging/refueling/driving/maintenance/cabinconditioning/other)
 - Possible datasets Primary Data concept

SG4 Scope

 Provide a comprehensive methodology for calculating realistic GhG emissions and energy consumption over vehicle use-phase at various levels of detail and considering the availability of different information and datasets

In – Use GhG emissions and energy consumption

European Commission

SG4 Boundaries

- Agree on vehicle types type/powertrains to be included
- Define service life (OEM or Default)
- Agree on databases acceptable data sources standards
- Define maintenance frequency

Covering activity from circulation to end-of-life

Draft CO₂eq Calculation (JRC)**

Lifetime GhG_{use} [CO2eq] = GhG [CO2eq/km] * total average distance [km] + Maintainance * occurrences + waste (total)

GhG [CO2eq/km] = Energy consumption (MJ/km) * Conversion Factor SG6 + Fuel Energy Consumption (g/km) * Conversion Factor SG6 + fugitive emissions + other emissions (TBD from the guidebook)

Energy consumption OR Fuel energy consumption = TA Value (or equivalent) * RW correction factor [lvl1, lvl2, lvl3, lvl4] * degradation factor [lvl1, lvl2, lvl 3, lvl 4] * other factors (?)

** Important to define levelling concept [lvl1, lvl2, lvl 3,lvl 4] and the data sources

Levels concept of Use Phase

+ Conservative

+ Detailed

Level Concept for SG4 - JRC

*USE	Reference Vehicle	Representativ eness	Energy consumption		Meintenenee	Comrise Life
PHASE			In-use	Charging	Maintenance	Service Life
Level 1	General concept per powertrain tech /energy carrier	Global average	Average homologation value normalized to WLTP corrected for RW (global)	Generic charging eff(?)	Generic	Generic/Global
Level 2	General concept per powertrain tech/energy carrier	Regional (EU/US/JP/KR /CN…)	Regional typical of vehicle type representative or Real World (RW)	Regional typical charging eff value (at vehicle level)	Generic/regional	Regional typical service life for each vehicle type
Level 3	Representative vehicle for each OEM/powertrain/energy carrier (need to define criteria)	OEM/National	OEM-resolution and assumptions for RW performance	OEM average efficiency (standardised?)	OEM Specific	Regional with option to declared higher life
Level 4	Specific OEM's vehicle model	OEM's specific vehicle model	Homologation value corrected based on RW characteristic value (based on OBFCM or similar data provided by operators)	Vehicle specific charging eff (at vehicle level)	Model-region specific	OEM/Model specific average data

Feedback from members

Commission

SG4 Meeting Schedule Plan

September	October	November	December	January	February
-	10 th – SG4 4 th meeting	5 th – SG4 4 th meeting	4 th – A LCA 12 th IWG	8/9 th – A LCA 13 th IWG @Geneva	
7 th – A LCA 10 th IWG	17/18 th – A LCA 11 th IWG @BRU		12 th – SG4 6 th meeting	16 th – SG4 7 th meeting	TBD

Thank you

Giuseppe Di Pierro, Scientific Officer

European Commission Joint Research Centre

Energy, Transport and Climate

JRC C.4 - Sustainable, Smart & Safe Mobility Unit

Tel: +39 033278-6068

E-mail: Giuseppe.Di-Pierro@ec.europa.eu

Fuel Consumption/Efficiency

Equivalence matrix (for positive energy demand & mean efficiency)