First comprehensive analysis of data in the new CARES RS database James TATE, Chris RUSHTON & Dr Zhuoqian YANG (Southwest Jiaotong University, CH) Institute for Transport Studies (ITS), University of Leeds, UK Email: j.e.tate@its.leeds.ac.uk *Twitter / X*: **drjamestate** **Web-App**: interact with the latest EU vehicle emission remote sensing data: https://cares-public-app.azurewebsites.net | CARES CosmosDB Database | | | | | | | | | |-------------------------|----------------|---------------------------|----------------|--|--|--|--|--| | Milan | Krakow | Prague | Sarajevo* | | | | | | | Remote Sensing | Remote Sensing | Remote Sensing | Remote Sensing | | | | | | | Snapshot | Snapshot | Snapshot | Snapshot | | | | | | | Point Sampling | Point Sampling | Point Sampling | | | | | | | | Timeseries | Timeseries | Timeseries | | | | | | | | Point Sampling | Point Sampling | Point Sampling | | | | | | | | Snapshot | Snapshot | Snapshot | | | | | | | | | | Plume Chasing
Snapshot | | | | | | | | DEMONSTRATION | INSTRUMENT | MEASUREMENTS | |---------------------|------------|--------------| | CITY (WP3) or other | (see Key) | (number) | | MILAN | PS | 10,852 | | | RS | 35,568 | | PRAGUE | RS | 120,611 | | | PS | 10,658 | | | PC | 3,374 | | KRAKOW | RS | 128,883 | | | PS | 6,162 | | Sarajevo* | RS | 25,079 | | CARES TOTAL | | 341,187 | | CONOX | | 1,840,659 | | REMOVES Project | RS HEAT | 150,684 | | | RS OPUS | 130,667 | | TOTAL | All | 2,463,197 | **NEW 2023** Switzerland (Zurich) RS (Opus) measurements (now open data) n = 37k KEY: RS - commercial Remote Sensing, PS - Point Sampling, PC - Plume Chasing | Tasks performed before handover | Tasks performed between handover and retrieval | Post-retrieval analysis | | |--|---|---|--| | Remote sensing deployment data collected Initial data sense check | Data quality control functions applied | Queried data set accessed | | | Data collected using normal procedures Initial sense checks of data to be performed offline, including: Data exists in the file Data is in the correct format Some data checks available in GUI Prioritization of headers for checking Headers updated to standard form Ranges of data match CONOX or reference values already in database Data set converted into database format Data is ready to be uploaded | Data is received by the database Data is added to the database in the form it was delivered Data is stored on the database and remains encrypted Data retrieval request is received subject to permissions Quality control functions are applied to queried data Data is ready to be retrieved | Data access controlled by Azure platform Security based on institution standards All actions auditable Anonymous read-only queries for some users Download for selected users User interface via Streamlit Data is ready to be analyzed | | | Data Collection Handover | Storage Query | Download | | **Web-App**: interact with the latest EU vehicle emission remote sensing data: https://cares-public-app.azurewebsites.net See conference paper on Minerva: Rushton, C., Tate, J., Callaghan, M., Knoll, M., Sjodin, A. 2023. A modern, flexible cloud-based database and computing service for storing & analysing vehicle emission measurements. Transport & Air Pollution Conference, September 2023. # **CARES Project** Measurements 2021/2022/2023 https://cares-project.eu/ ### RS ANALYSIS ### Identifying high-chance HIGH EMITTERS ### MEAUREMENTS: 2021 / 2022 / 2023 | Campaign | Site | Year | Dates | Device | Measurements (n) | Measurements-diesel car (n) | |------------------------|----------|------|--------------|--------|------------------|-----------------------------| | Switzerland | Zurich | 2021 | May 29-Jun11 | Heat | 150683 | 17363 | | Switzerland | ТВС | 2021 | Apr 26-Jun17 | Opus | 130666 | 20588 | | Italy | Milan | 2021 | Sept 23-Oct8 | Heat | 35568 | 7954 | | Poland | Krakow | 2021 | Nov 30-Dec10 | Opus | 128883 | 43852 | | Czech Republic | Prague | 2022 | Sept 5-23 | Opus | 120611 | 48459 | | Bosnia and Herzegovina | Sarajevo | 2022 | Jun 28-Jul1 | Opus | 25079 | 11920 | | Switzerland | Zurich | 2023 | 2023 | Opus | 36566 | 14371 | Rushton, C., Tate, J., Shepherd, S. 2021. A novel method for comparing passenger car fleets and identifying high-chance gross emitting vehicles using kerbside remote sensing data. Science of the Total Environment, 2021, 750, 142088. DOI: 10.1016/j.scitotenv.2020.142088 Yang, Z., Tate, J., Rushton, C., Morganti, E., Shepherd, S.P. 2022. Detecting candidate high NO_X emitting light commercial vehicles using vehicle emission remote sensing. Science of the Total Environment, 2022, 823, 153699. DOI: 10.1016/j.scitotenv.2022.153699 # **METHOD** ### **METHOD** Algorithm for identifying the 'off-model' (high chance high-emitting) vehicles: Step 1: Apply the Gumbel / Laplace distribution to the whole fleet F_{100} Step 2: Calculate R_2 value of the observed and theoretical quantiles for fleet F_{100} Step 3: Cut the fleet at each integer percentile starting from 99, apply the Gumbel distribution to F_i , i = 99, 98, ..., 1 Step 4: Calculate R_2 value of observed and theoretical quantiles for fleet F_i (F_{99} , F_{98} , ..., F_1) Step 5: Repeat steps 3–4 until there is no vehicle left in the fleet Step 6: Create a dot plot of the cutting percentiles vs. the R_2 values Step 7: Sub-fleet with the maximum R_2 value is regarded as the 'on-model' vehicle subset, and the fit parameters for the 'on-model' vehicles are the best description of the normally behaving vehicles in the whole fleet; the rest of the vehicles that do not follow Gumbel distribution are regarded as 'off-model' vehicles # **METHOD** ### Identifying high-chance HIGH EMITTERS Switzerland-Heat May-Jun 2021 ### Euro 6a/b ### **Euro 6d-TEMP** ### Euro 6d ### Identifying high-chance HIGH EMITTERS ### **Switzerland-Heat** May-Jun 2021 Euro 4 Euro 5 #### Measurements # 10000-10000-5461 5000-2154 2737 Euro 6 **Emission Standards** Euro 6d-TEMP Euro 6d ### Location Value (LV) & % High-Emitter (HE) ### Identifying high-chance HIGH EMITTERS Czech-Rep Prague Sept-2022 ### Identifying high-chance HIGH EMITTERS GUMBEL Czech-Rep Prague Sept-2022 ### Identifying high-chance HIGH EMITTERS Czech-Rep Prague Sept-2022 # RS ANALYSIS | | Country | City | Year | Device | E4 | E5 | E6a/b | E6d-T | E6d | |-----------------|-------------|--------|------|--------|------|------|-------|-------|-----| | | Switzerland | Zurich | 2021 | Heat | 6.4 | 5.5 | 2.7 | 0.5 | 0.5 | | kg) | Switzerland | Zurich | 2021 | Opus | 3.3 | 3.7 | 1.3 | 0.6 | 0.5 | | Location (g/kg) | Italy | Milan | 2021 | Heat | 7.2 | 7.4 | 3.2 | 0.5 | 0.1 | | atio | Poland | Krakow | 2021 | Opus | 9.6 | 8.6 | 2.2 | 0.6 | 0.4 | | Loc | Czech-Rep | Prague | 2022 | Opus | 8.7 | 7.2 | 2.6 | 1.4 | 0.8 | | | Switzerland | Zurich | 2023 | Opus | 12.3 | 11.0 | 4.2 | 1.1 | 0.6 | | | Switzerland | Zurich | 2021 | Heat | 4.0 | 3.9 | 3.2 | 1.2 | 1.1 | | 66 | Switzerland | Zurich | 2021 | Opus | 5.2 | 5.5 | 4.3 | 2.2 | 2.0 | | (g/kg) | Italy | Milan | 2021 | Heat | 5.9 | 5.7 | 3.4 | 1.3 | 1.0 | | Scale | Poland | Krakow | 2021 | Opus | 8.3 | 8.4 | 5.2 | 2.0 | 2.1 | | Š | Czech-Rep | Prague | 2022 | Opus | 8.2 | 7.7 | 6.2 | 3.2 | 2.8 | | | Switzerland | Zurich | 2023 | Opus | 8.2 | 9.1 | 5.5 | 3.0 | 3.0 | # RS ANALYSIS | | Country | City | Year | Device | E4 | E5 | E6a/b | E6d-T | E6d | |-------------------|-------------|--------|------|--------|----|----|-------|-------|-----| | | Switzerland | Zurich | 2021 | Heat | 0 | 0 | 0 | 3 | 2 | | r (H | Switzerland | Zurich | 2021 | Opus | 2 | 2 | 4 | 9 | 13 | | High-Emitter (HE) | Italy | Milan | 2021 | Heat | 0 | 0 | 7 | 5 | 4 | | h-En | Poland | Krakow | 2021 | Opus | 1 | 1 | 4 | 10 | 5 | | | Czech-Rep | Prague | 2022 | Opus | 0 | 1 | 1 | 2 | 2 | | % | Switzerland | Zurich | 2023 | Opus | 0 | 0 | 5 | 2 | 1 | | | Switzerland | Zurich | 2021 | Heat | | | | 22 | 16 | | ıtion | Switzerland | Zurich | 2021 | Opus | 17 | 16 | 36 | 60 | 62 | | contribution | Italy | Milan | 2021 | Heat | | | 25 | 35 | 43 | | | Poland | Krakow | 2021 | Opus | 7 | 7 | 28 | 48 | 61 | | % HE | Czech-Rep | Prague | 2022 | Opus | | 5 | 7 | 15 | 28 | | | Switzerland | Zurich | 2023 | Opus | | | 23 | 16 | 10 | ### ON-GOING RESEARCH ### Identifying high-chance HIGH EMITTERS #### **ANALYSIS:** - ADD Sarajevo 2022 data - Further quality checks on the latest Switzerland 2023 data >> CARES database - Review individual site characteristics, environmental conditions & emission results - Replicate analysis for PETROL passenger cars - Identify 'common' high emitting vehicle models (Marque, Model, Euro/Fuel type) - Vehicle 'families', engine codes & 'alliances' (uCAREs project) - Prepare paper: Science of the Total Environment #### **DATABASE:** - Welcome **NEW** datasets - Zurich data now "open" >> open-CARES-App - Extend functionality e.g. a deterioration function - where mileage information is available e.g. Switzerland 2023 (small sample)