

First comprehensive analysis of data in the new CARES RS database

James TATE, Chris RUSHTON & Dr Zhuoqian YANG (Southwest Jiaotong University, CH)
Institute for Transport Studies (ITS), University of Leeds, UK

Email: j.e.tate@its.leeds.ac.uk

Twitter / X: **drjamestate**

Web-App: interact with the latest EU vehicle emission remote sensing data:

https://cares-public-app.azurewebsites.net

CARES CosmosDB Database								
Milan	Krakow	Prague	Sarajevo*					
Remote Sensing	Remote Sensing	Remote Sensing	Remote Sensing					
Snapshot	Snapshot	Snapshot	Snapshot					
Point Sampling	Point Sampling	Point Sampling						
Timeseries	Timeseries	Timeseries						
Point Sampling	Point Sampling	Point Sampling						
Snapshot	Snapshot	Snapshot						
		Plume Chasing Snapshot						

DEMONSTRATION	INSTRUMENT	MEASUREMENTS
CITY (WP3) or other	(see Key)	(number)
MILAN	PS	10,852
	RS	35,568
PRAGUE	RS	120,611
	PS	10,658
	PC	3,374
KRAKOW	RS	128,883
	PS	6,162
Sarajevo*	RS	25,079
CARES TOTAL		341,187
CONOX		1,840,659
REMOVES Project	RS HEAT	150,684
	RS OPUS	130,667
TOTAL	All	2,463,197

NEW 2023

Switzerland
(Zurich) RS (Opus)
measurements
(now open data) n = 37k

KEY: RS - commercial Remote Sensing, PS - Point Sampling, PC - Plume Chasing

Tasks performed before handover	Tasks performed between handover and retrieval	Post-retrieval analysis	
Remote sensing deployment data collected Initial data sense check	Data quality control functions applied	Queried data set accessed	
 Data collected using normal procedures Initial sense checks of data to be performed offline, including: Data exists in the file Data is in the correct format Some data checks available in GUI Prioritization of headers for checking Headers updated to standard form Ranges of data match CONOX or reference values already in database Data set converted into database format Data is ready to be uploaded	 Data is received by the database Data is added to the database in the form it was delivered Data is stored on the database and remains encrypted Data retrieval request is received subject to permissions Quality control functions are applied to queried data Data is ready to be retrieved 	 Data access controlled by Azure platform Security based on institution standards All actions auditable Anonymous read-only queries for some users Download for selected users User interface via Streamlit Data is ready to be analyzed 	
Data Collection Handover	Storage Query	Download	

Web-App: interact with the latest EU vehicle emission remote sensing data:

https://cares-public-app.azurewebsites.net

See conference paper on Minerva: Rushton, C., Tate, J., Callaghan, M., Knoll, M., Sjodin, A. 2023. A modern, flexible cloud-based database and computing service for storing & analysing vehicle emission measurements. Transport & Air Pollution Conference, September 2023.

CARES Project

Measurements 2021/2022/2023 https://cares-project.eu/

RS ANALYSIS

Identifying high-chance HIGH EMITTERS

MEAUREMENTS: 2021 / 2022 / 2023

Campaign	Site	Year	Dates	Device	Measurements (n)	Measurements-diesel car (n)
Switzerland	Zurich	2021	May 29-Jun11	Heat	150683	17363
Switzerland	ТВС	2021	Apr 26-Jun17	Opus	130666	20588
Italy	Milan	2021	Sept 23-Oct8	Heat	35568	7954
Poland	Krakow	2021	Nov 30-Dec10	Opus	128883	43852
Czech Republic	Prague	2022	Sept 5-23	Opus	120611	48459
Bosnia and Herzegovina	Sarajevo	2022	Jun 28-Jul1	Opus	25079	11920
Switzerland	Zurich	2023	2023	Opus	36566	14371

Rushton, C., Tate, J., Shepherd, S. 2021. A novel method for comparing passenger car fleets and identifying high-chance gross emitting vehicles using kerbside remote sensing data. Science of the Total Environment, 2021, 750, 142088. DOI: 10.1016/j.scitotenv.2020.142088

Yang, Z., Tate, J., Rushton, C., Morganti, E., Shepherd, S.P. 2022. Detecting candidate high NO_X emitting light commercial vehicles using vehicle emission remote sensing. Science of the Total Environment, 2022, 823, 153699. DOI: 10.1016/j.scitotenv.2022.153699

METHOD

METHOD

Algorithm for identifying the 'off-model' (high chance high-emitting) vehicles:

Step 1: Apply the Gumbel / Laplace distribution to the whole fleet F_{100}

Step 2: Calculate R_2 value of the observed and theoretical quantiles for fleet F_{100}

Step 3: Cut the fleet at each integer percentile starting from 99, apply the Gumbel distribution to F_i , i = 99, 98, ..., 1

Step 4: Calculate R_2 value of observed and theoretical quantiles for fleet F_i (F_{99} , F_{98} , ..., F_1)

Step 5: Repeat steps 3–4 until there is no vehicle left in the fleet

Step 6: Create a dot plot of the cutting percentiles vs. the R_2 values

Step 7: Sub-fleet with the maximum R_2 value is regarded as the 'on-model' vehicle subset, and the fit parameters for the 'on-model' vehicles are the best description of the normally behaving vehicles in the whole fleet; the rest of the vehicles that do not follow Gumbel distribution are regarded as 'off-model' vehicles

METHOD

Identifying high-chance HIGH EMITTERS

Switzerland-Heat May-Jun 2021

Euro 6a/b

Euro 6d-TEMP

Euro 6d

Identifying high-chance HIGH EMITTERS

Switzerland-Heat

May-Jun 2021

Euro 4

Euro 5

Measurements

10000-10000-5461 5000-2154 2737

Euro 6

Emission Standards

Euro 6d-TEMP

Euro 6d

Location Value (LV) & % High-Emitter (HE)

Identifying high-chance HIGH EMITTERS

Czech-Rep Prague Sept-2022

Identifying high-chance HIGH EMITTERS

GUMBEL

Czech-Rep Prague Sept-2022

Identifying high-chance HIGH EMITTERS

Czech-Rep Prague Sept-2022

RS ANALYSIS

	Country	City	Year	Device	E4	E5	E6a/b	E6d-T	E6d
	Switzerland	Zurich	2021	Heat	6.4	5.5	2.7	0.5	0.5
kg)	Switzerland	Zurich	2021	Opus	3.3	3.7	1.3	0.6	0.5
Location (g/kg)	Italy	Milan	2021	Heat	7.2	7.4	3.2	0.5	0.1
atio	Poland	Krakow	2021	Opus	9.6	8.6	2.2	0.6	0.4
Loc	Czech-Rep	Prague	2022	Opus	8.7	7.2	2.6	1.4	0.8
	Switzerland	Zurich	2023	Opus	12.3	11.0	4.2	1.1	0.6
	Switzerland	Zurich	2021	Heat	4.0	3.9	3.2	1.2	1.1
66	Switzerland	Zurich	2021	Opus	5.2	5.5	4.3	2.2	2.0
(g/kg)	Italy	Milan	2021	Heat	5.9	5.7	3.4	1.3	1.0
Scale	Poland	Krakow	2021	Opus	8.3	8.4	5.2	2.0	2.1
Š	Czech-Rep	Prague	2022	Opus	8.2	7.7	6.2	3.2	2.8
	Switzerland	Zurich	2023	Opus	8.2	9.1	5.5	3.0	3.0

RS ANALYSIS

	Country	City	Year	Device	E4	E5	E6a/b	E6d-T	E6d
	Switzerland	Zurich	2021	Heat	0	0	0	3	2
r (H	Switzerland	Zurich	2021	Opus	2	2	4	9	13
High-Emitter (HE)	Italy	Milan	2021	Heat	0	0	7	5	4
h-En	Poland	Krakow	2021	Opus	1	1	4	10	5
	Czech-Rep	Prague	2022	Opus	0	1	1	2	2
%	Switzerland	Zurich	2023	Opus	0	0	5	2	1
	Switzerland	Zurich	2021	Heat				22	16
ıtion	Switzerland	Zurich	2021	Opus	17	16	36	60	62
contribution	Italy	Milan	2021	Heat			25	35	43
	Poland	Krakow	2021	Opus	7	7	28	48	61
% HE	Czech-Rep	Prague	2022	Opus		5	7	15	28
	Switzerland	Zurich	2023	Opus			23	16	10

ON-GOING RESEARCH

Identifying high-chance HIGH EMITTERS

ANALYSIS:

- ADD Sarajevo 2022 data
- Further quality checks on the latest Switzerland 2023 data >> CARES database
- Review individual site characteristics, environmental conditions & emission results
- Replicate analysis for PETROL passenger cars
- Identify 'common' high emitting vehicle models (Marque, Model, Euro/Fuel type)
 - Vehicle 'families', engine codes & 'alliances' (uCAREs project)
- Prepare paper: Science of the Total Environment

DATABASE:

- Welcome **NEW** datasets
- Zurich data now "open" >> open-CARES-App
- Extend functionality e.g. a deterioration function
 - where mileage information is available e.g. Switzerland 2023 (small sample)